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Abstract 
Modern electronic design automation (EDA) tooling tends 
to focus on either the system-level design or the low-level 
electrical connectivity between physical components on a 
printed circuit board (PCB). We believe that a usable and 
functional system for circuit design needs to be able to in-
terleave both levels of abstraction seamlessly and allow 
designers to transition between them freely. Existing work 
has experimented with approaches like circuit synthesis, 
functional characterization, or fine grained physical model-
ing. Each of these approaches augment the design process 
as it exists today, with its fundamental split between various 
levels of abstraction. We notice that hierarchical block dia-
grams can capture both high-level system structure as well 
as fine grained physical connectivity, and use that symme-
try to construct a model for electronic circuits that can span 
the entire design process. Additionally, we construct user 
interfaces for our model that can support users of different 
skill levels throughout a design task. We discuss the design 
of our system, detailing both fundamental abstractions and 
usability trade-offs, and demonstrate its current capabilities 
through the design of example electronics projects. 
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Figure 1: Overall system flow. 
Designers start by writing the 
design HDL, which is then 
elaborated into the hierarchy block 
graph model. That graph is refined 
through interactive choices in the 
GUI and automatically solved 
constraints in the blocks. The result 
is then exported to a netlist file, 
which can be imported into a board 
design tool for manual layout. 

CCS Concepts 
•Hardware → PCB design and layout; •Software and its 
engineering → Domain specific languages; 

Introduction 
Circuit design, especially at the printed circuit board (PCB) 
level, is integral part of most electronic device design. One 
common design workflow today starts with a high level sys-
tem diagram that captures all the major functional blocks in 
a device (such as processing, power, or IO) without defin-
ing most of the details needed to implement those portions 
of a design [10]. From there, designers recursively refine 
each block in until they can create a circuit diagram, a low-
level representation of a design, and enter it into the tooling 
needed for the physical design process. This refinement 
process tends to require a significant body of knowledge 
spanning many subdomains such as analog circuits, power 
systems, and digital logic. 

Modern electronic design automation (EDA) largely focuses 
on that last step, after the actual electrical design problem 
is solved, and where the major remaining work is data entry 
required to progress to physical design. EDA tools enter 
the design process too late to provide more fundamental 
design assistance, and are further limited by their weak 
correctness checks. 

In this work we strive to build tools that can support elec-
tronics design from the first high-level systems diagram 
through to the creation of a netlist, the map of connections 
needed to layout the physical lines of copper on a PCB. In 
particular, we note that hierarchical block diagrams serve as 
a natural structure for the design process that spans across 
abstraction levels. Furthermore, the addition of some para-
metricity continues the support for high-level design while 
allowing experienced engineers to provide implementa-

tions for those blocks and build reusable libraries. This sep-
aration of interface from implementation enables relative 
novices to leverage the knowledge of experts. We foresee 
an open-source community of engineers and designers, 
similar to that in the software world, where open collabo-
ration and communication lowers the barrier of entry into 
electronics design even further. 

In the rest of this paper, we first detail our underlying hier-
archy block diagram model, present a user-facing hardware 
description language (HDL) for authoring block diagrams, 
describe an associated graphical interface for refining and 
exploring designs, and finally demonstrate our system’s ca-
pabilities by building two devices. 

Related Work 
Our prior work examining modern practices in board design 
revealed that while the interesting hardware design tends to 
happen across levels of abstraction, mainstream schematic 
tools operate at the level of individual components [10]. 
Hierarchical block diagrams were identified as a promising 
model that can support both high level system design and 
automate lower level subcircuit design. 

Some recent work on novel electronics design tools has 
focused on novices. Fritzing [9], for example, provides a 
breadboard view of a circuit as a conceptual bridge to the 
schematic view. However, it does not offer any more design 
assistance than mainstream schematic tools. 

Another approach has been hardware description lan-
guages (HDLs). The simplest is PHDL [12], which gives 
a textual representation of schematics and allows limited re-
use. JITPCB [2] extends the concept by embedding circuit 
construction functionality into a programming language and 
enabling circuit generators, such as arraying components. 
In both systems, design support automation, such as parts 
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Figure 2: An example of a simple 
blinky LED circuit in our conceptual 
user-facing model (top) and 
internal model (bottom). The 
simplified user-facing model is 
presented at a single level of 
hierarchy, and contains just blocks 
(rectangles) with ports (circles) that 
can be connected. This largely 
follows representations in system 
architecture diagrams. The more 
detailed internal model spans 
multiple levels of abstraction by 
including internal hierarchy, and 
connections are described through 
links (diamonds). 

selection and correctness checks, is limited by the lack of 
an electronics model beyond connected pins. An inability to 
model operating conditions such as voltages and currents 
could mean parts are operated outside rated conditions. 

Recent work has also seen high-level design tools, includ-
ing Trigger-Action-Circuits [1], where designs are specified 
at a behavioral level; Geppetto [6], where designs are spec-
ified at a block-diagram level; and circuito.io [3] and EDA-
Solver [4], where designs are a collection of parts attached 
to a central microcontroller. As these systems are able to 
generate working circuits, they likely do some electronics 
modelling, but their details have not been published. Lack 
of support for user-defined parts further limits designs to a 
single level of abstraction, fixed by the tool. 

AutoFritz [11], on the other hand, supports designers by 
providing circuit autocomplete suggestions. However, it, too, 
is limited to a single level of abstraction, that of individual 
components. Its connection-oriented, data-driven approach 
also provides weaker correctness guarantees than a model-
based approach. 

While EDG [13] focuses on the underlying blocks and links 
problem structure, electronics model, and circuit synthe-
sis algorithm, less attention is paid to the user interface. 
Our system extends that fundamental model with hierar-
chy blocks and combines it with generators to produce an 
end-to-end circuit design tool capable of high-level design. 

System Design 
The overall workflow of our system is summarized in Fig-
ure 1. Designers start by writing HDL code, which is elab-
orated down into a hierarchical block diagram model. De-
tails in this model, such as electrical parameters and block 
sub-types, may start unknown, but are refined through a 
combination of user input in an interactive GUI and a solver. 

When fully elaborated, the flattened hierarchical block di-
agram encodes a schematic, and can be exported via a 
netlist to an external board layout tool. 

In the rest of this section, we first detail the underlying 
model, then examine the user-facing HDL and GUI, and 
finally discuss integration with downstream tools. 

Model and Abstractions 
Our foundational model is designed to work well for users 
without compromising on expressiveness. At the most prim-
itive level we provide users with three things: first, a block 
diagram model for system designs; second, a type or con-
straint system that validates whether any given block dia-
gram represents a functional embedded design; and finally, 
a specification that describes how to encode concrete prop-
erties of design components, like acceptable voltage range 
or pin type within the type system. 

In Figure 2 we show the three main components of our 
block diagram model: blocks, links, and ports. Blocks rep-
resent portions of a design that can be connected together 
via implicitly inferred links. Likewise, ports describe specific 
interfaces between blocks and links. 

While modern schematic tools require specification of par-
ticular parts, our system enables designers to, for example, 
instantiate and connect an LED at that level of specificity. In 
fact, fixing a specific abstraction level, like modern tools do, 
hinders the user by requiring different tooling for different 
portions of their workflow. 

This flexibility of abstraction layer is enabled by the two no-
tions of hierarchy that our model uses. The first is structural 
hierarchy, where each block or link can contain some inter-
nal structure at a lower lever of abstraction. For instance an 
abstract LED block, something with interfaces like "Power" 
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Figure 3: Type hierarchy example 
with resistors. Resistor has three 
subtypes, ChipResistor, 
AxialResistor, and 
VerticalAxialResistor, which all 
fulfill the resistor interface and 
functionality, and can be used in its 
place. This mechanism provides 
support for abstraction and 
ambiguity in our model. 

and "Input Signal", can itself be made up of a sub-circuit 
containing the diodes, transistors, and resistors that de-
scribe components at a schematic level. This holds for 
Links and Ports as well, with high level interfaces like data 
busses containing internal links that each represent distinct 
electrical connections for data and clocking. 

The second notion of hierarchy in our model, the type hier-
archy show in Figure 3, integrates tightly with the notion of 
structural hierarchy. Blocks, Links, and Ports all have type 
signatures that we can use to check compatibility, and verify 
the correctness of a system design. The key property of our 
type system is that any particular specific implementation of 
an element, like a power system, is a subtype of the more 
general class. Altogether, this means that superclasses and 
hierarchy blocks provide a safe parametric abstraction for 
both the user and our underlying tooling. 

Hardware Construction Language 
As for a user-facing interface into this graph model, recent 
work in the chip space [7] has demonstrated the effective-
ness of generator languages. Generators can not only de-
scribe a single instance of a design, but also encode the 
methodology to construct a class of designs. For example, 
an LED-resistor subcircuit generator might automatically 
calculate the resistance needed given the input voltage. 

We follow a similar approach, providing block diagram con-
struction primitives as functions in Python and enabling pro-
grammatic generation of hardware. Python’s ease-of-use 
and popularity among even non software engineers make it 
a good candidate for host language. 

As shown by the Blinky HDL example in Figure 4 (which 
essentially describes the simplified model in Figure 2), the 
hardware construction interface revolves around object-
oriented programming. Classes represent a hierarchy block 

1 class Bl in ky ( Block ) : 
2 def contents ( s e l f ) : 
3 super ( ) . contents ( ) 
4 s e l f . mcu = s e l f . Block ( Nucleo_F303k8 ( ) ) 
5 s e l f . led = s e l f . Block ( I nd i ca to rLed ( ) ) 
6 s e l f . connect ( s e l f .mcu . gnd , s e l f . led . gnd ) 
7 s e l f . connect ( s e l f .mcu . d i g i t a l [ 0 ] , s e l f . led . i o ) 

Figure 4: Example code defining the Blinky circuit Block. Within 
the block’s contents, lines 4 and 5 instantiate the sub-blocks for 
the Nucleo microcontroller board and a discrete LED. Lines 6 and 
7 then make the signal and ground connections. 

1 class I nd i ca to rLed ( GeneratorBlock ) : 
2 def _ _ i n i t _ _ ( s e l f ) −> None : 
3 super ( ) . _ _ i n i t _ _ ( ) 
4 s e l f . i o = s e l f . Por t ( D i g i t a l S i n k ( ) ) 
5 s e l f . gnd = s e l f . Por t ( Ground ( ) ) 
6 
7 def generate ( s e l f ) : 
8 super ( ) . generate ( ) 
9 TARGET_CURRENT_MIN = 0 .001; # 1 mAmp 

10 TARGET_CURRENT_MAX = 0 .010; # 10 mAmp 
11 vo l tage = s e l f . get ( s e l f . i o . ou tpu t_h igh_vo l tage ) 
12 s e l f . led = s e l f . Block ( Led ( ) ) 
13 s e l f . res = s e l f . Block ( Res is to r ( 
14 res i s tance =( vo l tage / TARGET_CURRENT_MAX, 
15 vo l tage / TARGET_CURRENT_MIN ) ) ) 

Figure 5: Simplified code for the indicator LED subcircuit. Lines 4 
and 5 define the external ports by their types, while lines 12 and 
13 define the internal blocks. Notably, as shown on line 11, 
generators can access solved values like input digital logic 
thresholds, and use those to automatically size internal blocks like 
the resistor. We omit the internal connections for brevity. 
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Figure 6: Prototype design 
explorer GUI with the Blinky 
example from Figure 2 open. The 
tree view on the top left lists the 
elements of the hierarch block 
diagram and allows navigation 
through the design. The tree view 
on the top right lists refinements for 
the currently selected Resistor, 
with the surface-mount 
ChipResistor selected and the 
resulting constraint listed in the 
center right. The bottom box 
displays details of the selected 
element. 

template that can be re-used, while objects represent indi-
vidual instances. The generator defining the block’s con-
tents are written as member functions, and can call meth-
ods to instantiate sub-blocks, ports, and parameters. 

Subcircuits and generators are defined similarly, as shown 
in Figure 5. The same also mostly holds true for links, given 
their block-like structure. 

Links and Inference 
Link types are automatically inferred based on the types 
of ports being connected, freeing the user from needing 
to manually specify this information. Strongly typed links 
can detect and prevent mistakes like nonsensical electrical 
connections, such as between power and data wires. Fur-
thermore, links can also provide rules for parameter propa-
gation and limits, for example for output voltages and rated 
maximums, though verification remains a work-in-progress. 

We do caution that an electrically correct circuit may not 
be functionally useful. While connecting the UART data 
ports of two GPSes together is electrically valid and allowed 
in our model, the result is nonsensical. Future work could 
model higher domains, such as firmware and dataflow. 

GUI 
Prior work [10] has highlighted the need to balance control 
and transparency with automation, so our system features a 
GUI to allow interaction with a generated design. 

The current prototype, shown in Figure 6, illustrates the 
core required functionality of providing visibility into the sys-
tem’s reasoning through displaying solved values. Further-
more, the ability to set value constraints and select block 
subtypes allows the HDL design to stay at a high level while 
specifics can be set interactively. For example, in a design 

that calls for a generic resistor, a user can select a particu-
lar sub-type like a surface-mount resistor. 

Ongoing work includes refining the interface to be more 
usable, such as by supplementing the tree view with an 
automatically laid out hierarchy block diagram [5]. 

Board Generation 
As subcircuits are fully defined at lower levels of the hier-
archy block diagram, the overall design is equivalent to a 
schematic. Our system can export this netlist file describ-
ing components and their connectivity, which can then be 
imported into KiCad’s [8] board layout tool. Otherwise, we 
currently do not address board layout. 

As the overall hardware design flow involves a back-and-
forth between schematic and layout, we use name stabil-
ity to allow updates without losing a work-in-progress lay-
out. However, additional strategies are needed when name 
changes are necessary, such as when refactoring. 

Example Applications 
We demonstrate the capabilities of our system by construct-
ing a few example designs, then validating the functionality 
of the resulting hardware. 

Simon 
An extension of the above Blinky example is the Simon 
memory game, which consists of four colored light-up but-
tons and an accompanying audio tone for each color. 

We use a socketed Nucleo board as both a power source 
and microcontroller. Since the LEDs in the dome buttons 
require 12 volts while the Nucleo can only supply 5 volts, 
we use a boost converter to generate the necessary voltage 
and a MOSFET circuit to drive the illumination from a 3.3 
volt pin. We further added a speaker driver, speaker con-
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Figure 7: The Simon PCB 
(bottom-left) with connected 
buttons (right). Our system is able 
to generate the 5v to 12v boost 
converter subcircuit to drive the 
LEDs in the dome buttons. 

Figure 8: The datalogger PCB. 
Our system supports complex 
subcircuits such as 
microcontrollers application circuits 
and analog power generators such 
as the current-limited 
supercapacitor backup. 

nector, and debugging tricolor LED. In terms of structure, 
each of these was a library sub-block. 

Overall, the top-level HDL for Simon is 58 lines of code. 
Of note is that the boost converter instantiation was only 
one line to specify the controller chip and desired output 
voltage – minimizing design effort for an element where we 
do not care about the specific implementation. The boost 
converter generator library encapsulates the details and 
process of component sizing. 

Datalogger 
A more complex design is the datalogger, a board that 
records data from a Controller Area Network (CAN) inter-
face to a SD card. In contrast to Simon’s socketed micro-
controller board, this drops a microcontroller chip and its 
supporting components directly on the board. 

In addition to the mandatory CAN interface, SD card socket, 
microcontroller, and power conditioning blocks, this design 
also includes a supercapacitor-based backup power supply. 
Similar to Simon’s boost converter generator, the superca-
pacitor backup block generates a current-limited power sup-
ply and automatically sizes internal elements like transistor 
and reference voltage divider. 

Libraries 
As shown in the above examples, libraries are what ulti-
mately enables significant design automation. Though we 
have built a library including many common parts and sub-
circuits, it is far from complete. While a database of simple 
parts might be easily parse-able from a parametric prod-
uct table, complete details for more complex parts are often 
only available in PDF datasheets. 

Mixed-initiative approaches can help alleviate this process, 
allowing users to scan datasheets and select individual ta-

bles which can then be automatically parsed. While archaic 
encoding or formatting in some datasheets complicates the 
process, using external tools like Tabula [14] and DocParser 
is a potential solution. 

Overall, collaboration from a large community may be key 
to building a critical mass of parts to support the needs of 
users. 

Conclusion 
Building upon recent work examining how electronics de-
signers work and proposing a hierarchy block diagram ab-
straction, we implemented a circuit design tool based on 
those principles and which is capable of providing mean-
ingful design automation. System designers can compose 
systems using high-level blocks, while experienced engi-
neers can provide the implementation of those blocks as re-
usable generators, encapsulating their design methodology 
in executable code. We demonstrate the capability of this 
system though example designs, where complex subcircuits 
are generated from high-level specifications. 

Ultimately, we hope this system both enables existing en-
gineers to work more efficiently, and extends the reach of 
novices in building custom, personalized devices. 
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