
CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Supporting Circuit Design with a
Block-Based, Generator Language

Richard Lin
Rohit Ramesh
Connie Chi
Nikhil Jain
Prabal Dutta
Björn Hartmann
University of California, Berkeley
richard.lin@berkeley.edu
rkr@berkeley.edu
conniejchi@berkeley.edu
nikhil.jain@berkeley.edu
prabal@berkeley.edu
bjoern@eecs.berkeley.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’20 Extended Abstracts, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the author/owner(s).
ACM ISBN 978-1-4503-6819-3/20/04.
https://doi.org/10.1145/3334480.3382887

Abstract
Modern electronic design automation (EDA) tooling tends
to focus on either the system-level design or the low-level
electrical connectivity between physical components on a
printed circuit board (PCB). We believe that a usable and
functional system for circuit design needs to be able to in-
terleave both levels of abstraction seamlessly and allow
designers to transition between them freely. Existing work
has experimented with approaches like circuit synthesis,
functional characterization, or fine grained physical model-
ing. Each of these approaches augment the design process
as it exists today, with its fundamental split between various
levels of abstraction. We notice that hierarchical block dia-
grams can capture both high-level system structure as well
as fine grained physical connectivity, and use that symme-
try to construct a model for electronic circuits that can span
the entire design process. Additionally, we construct user
interfaces for our model that can support users of different
skill levels throughout a design task. We discuss the design
of our system, detailing both fundamental abstractions and
usability trade-offs, and demonstrate its current capabilities
through the design of example electronics projects.

Author Keywords
printed circuit board (PCB) design; circuit design; hardware
description language (HDL).

LBW019, Page 1

https://doi.org/10.1145/3334480.3382887
mailto:bjoern@eecs.berkeley.edu
mailto:prabal@berkeley.edu
mailto:nikhil.jain@berkeley.edu
mailto:conniejchi@berkeley.edu
mailto:rkr@berkeley.edu
mailto:richard.lin@berkeley.edu

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

HDL
class MyDesign:
 Port()
 Block()

Model
Interactive

Refinement

Netlist

Elaboration

PCB

R1 res0603
D1 led0603
net R1.1, D1.2

Solve

x=2V
i=3A

Chip
Resistor

Export

U1 R1

D
1

Manual Layout

Figure 1: Overall system flow.
Designers start by writing the
design HDL, which is then
elaborated into the hierarchy block
graph model. That graph is refined
through interactive choices in the
GUI and automatically solved
constraints in the blocks. The result
is then exported to a netlist file,
which can be imported into a board
design tool for manual layout.

CCS Concepts
•Hardware → PCB design and layout; •Software and its
engineering → Domain specific languages;

Introduction
Circuit design, especially at the printed circuit board (PCB)
level, is integral part of most electronic device design. One
common design workflow today starts with a high level sys-
tem diagram that captures all the major functional blocks in
a device (such as processing, power, or IO) without defin-
ing most of the details needed to implement those portions
of a design [10]. From there, designers recursively refine
each block in until they can create a circuit diagram, a low-
level representation of a design, and enter it into the tooling
needed for the physical design process. This refinement
process tends to require a significant body of knowledge
spanning many subdomains such as analog circuits, power
systems, and digital logic.

Modern electronic design automation (EDA) largely focuses
on that last step, after the actual electrical design problem
is solved, and where the major remaining work is data entry
required to progress to physical design. EDA tools enter
the design process too late to provide more fundamental
design assistance, and are further limited by their weak
correctness checks.

In this work we strive to build tools that can support elec-
tronics design from the first high-level systems diagram
through to the creation of a netlist, the map of connections
needed to layout the physical lines of copper on a PCB. In
particular, we note that hierarchical block diagrams serve as
a natural structure for the design process that spans across
abstraction levels. Furthermore, the addition of some para-
metricity continues the support for high-level design while
allowing experienced engineers to provide implementa-

tions for those blocks and build reusable libraries. This sep-
aration of interface from implementation enables relative
novices to leverage the knowledge of experts. We foresee
an open-source community of engineers and designers,
similar to that in the software world, where open collabo-
ration and communication lowers the barrier of entry into
electronics design even further.

In the rest of this paper, we first detail our underlying hier-
archy block diagram model, present a user-facing hardware
description language (HDL) for authoring block diagrams,
describe an associated graphical interface for refining and
exploring designs, and finally demonstrate our system’s ca-
pabilities by building two devices.

Related Work
Our prior work examining modern practices in board design
revealed that while the interesting hardware design tends to
happen across levels of abstraction, mainstream schematic
tools operate at the level of individual components [10].
Hierarchical block diagrams were identified as a promising
model that can support both high level system design and
automate lower level subcircuit design.

Some recent work on novel electronics design tools has
focused on novices. Fritzing [9], for example, provides a
breadboard view of a circuit as a conceptual bridge to the
schematic view. However, it does not offer any more design
assistance than mainstream schematic tools.

Another approach has been hardware description lan-
guages (HDLs). The simplest is PHDL [12], which gives
a textual representation of schematics and allows limited re-
use. JITPCB [2] extends the concept by embedding circuit
construction functionality into a programming language and
enabling circuit generators, such as arraying components.
In both systems, design support automation, such as parts

LBW019, Page 2

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Nucleo F303K8
mcu led

IndicatorLed

gnd

digital[0]

digital[1]

...

gnd

sig

Nucleo F303K8
mcu led

IndicatorLed

gnd

digital[0]

digital[1]

...

sig

src
sinks

src
sinks

gnd

Figure 2: An example of a simple
blinky LED circuit in our conceptual
user-facing model (top) and
internal model (bottom). The
simplified user-facing model is
presented at a single level of
hierarchy, and contains just blocks
(rectangles) with ports (circles) that
can be connected. This largely
follows representations in system
architecture diagrams. The more
detailed internal model spans
multiple levels of abstraction by
including internal hierarchy, and
connections are described through
links (diamonds).

selection and correctness checks, is limited by the lack of
an electronics model beyond connected pins. An inability to
model operating conditions such as voltages and currents
could mean parts are operated outside rated conditions.

Recent work has also seen high-level design tools, includ-
ing Trigger-Action-Circuits [1], where designs are specified
at a behavioral level; Geppetto [6], where designs are spec-
ified at a block-diagram level; and circuito.io [3] and EDA-
Solver [4], where designs are a collection of parts attached
to a central microcontroller. As these systems are able to
generate working circuits, they likely do some electronics
modelling, but their details have not been published. Lack
of support for user-defined parts further limits designs to a
single level of abstraction, fixed by the tool.

AutoFritz [11], on the other hand, supports designers by
providing circuit autocomplete suggestions. However, it, too,
is limited to a single level of abstraction, that of individual
components. Its connection-oriented, data-driven approach
also provides weaker correctness guarantees than a model-
based approach.

While EDG [13] focuses on the underlying blocks and links
problem structure, electronics model, and circuit synthe-
sis algorithm, less attention is paid to the user interface.
Our system extends that fundamental model with hierar-
chy blocks and combines it with generators to produce an
end-to-end circuit design tool capable of high-level design.

System Design
The overall workflow of our system is summarized in Fig-
ure 1. Designers start by writing HDL code, which is elab-
orated down into a hierarchical block diagram model. De-
tails in this model, such as electrical parameters and block
sub-types, may start unknown, but are refined through a
combination of user input in an interactive GUI and a solver.

When fully elaborated, the flattened hierarchical block di-
agram encodes a schematic, and can be exported via a
netlist to an external board layout tool.

In the rest of this section, we first detail the underlying
model, then examine the user-facing HDL and GUI, and
finally discuss integration with downstream tools.

Model and Abstractions
Our foundational model is designed to work well for users
without compromising on expressiveness. At the most prim-
itive level we provide users with three things: first, a block
diagram model for system designs; second, a type or con-
straint system that validates whether any given block dia-
gram represents a functional embedded design; and finally,
a specification that describes how to encode concrete prop-
erties of design components, like acceptable voltage range
or pin type within the type system.

In Figure 2 we show the three main components of our
block diagram model: blocks, links, and ports. Blocks rep-
resent portions of a design that can be connected together
via implicitly inferred links. Likewise, ports describe specific
interfaces between blocks and links.

While modern schematic tools require specification of par-
ticular parts, our system enables designers to, for example,
instantiate and connect an LED at that level of specificity. In
fact, fixing a specific abstraction level, like modern tools do,
hinders the user by requiring different tooling for different
portions of their workflow.

This flexibility of abstraction layer is enabled by the two no-
tions of hierarchy that our model uses. The first is structural
hierarchy, where each block or link can contain some inter-
nal structure at a lower lever of abstraction. For instance an
abstract LED block, something with interfaces like "Power"

LBW019, Page 3

https://circuito.io

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Resistor

ChipResistor

AxialResistor Vertical
AxialResistor

4K70

Figure 3: Type hierarchy example
with resistors. Resistor has three
subtypes, ChipResistor,
AxialResistor, and
VerticalAxialResistor, which all
fulfill the resistor interface and
functionality, and can be used in its
place. This mechanism provides
support for abstraction and
ambiguity in our model.

and "Input Signal", can itself be made up of a sub-circuit
containing the diodes, transistors, and resistors that de-
scribe components at a schematic level. This holds for
Links and Ports as well, with high level interfaces like data
busses containing internal links that each represent distinct
electrical connections for data and clocking.

The second notion of hierarchy in our model, the type hier-
archy show in Figure 3, integrates tightly with the notion of
structural hierarchy. Blocks, Links, and Ports all have type
signatures that we can use to check compatibility, and verify
the correctness of a system design. The key property of our
type system is that any particular specific implementation of
an element, like a power system, is a subtype of the more
general class. Altogether, this means that superclasses and
hierarchy blocks provide a safe parametric abstraction for
both the user and our underlying tooling.

Hardware Construction Language
As for a user-facing interface into this graph model, recent
work in the chip space [7] has demonstrated the effective-
ness of generator languages. Generators can not only de-
scribe a single instance of a design, but also encode the
methodology to construct a class of designs. For example,
an LED-resistor subcircuit generator might automatically
calculate the resistance needed given the input voltage.

We follow a similar approach, providing block diagram con-
struction primitives as functions in Python and enabling pro-
grammatic generation of hardware. Python’s ease-of-use
and popularity among even non software engineers make it
a good candidate for host language.

As shown by the Blinky HDL example in Figure 4 (which
essentially describes the simplified model in Figure 2), the
hardware construction interface revolves around object-
oriented programming. Classes represent a hierarchy block

1 class Bl in ky (Block) :
2 def contents (s e l f) :
3 super () . contents ()
4 s e l f . mcu = s e l f . Block (Nucleo_F303k8 ())
5 s e l f . led = s e l f . Block (I nd i ca to rLed ())
6 s e l f . connect (s e l f .mcu . gnd , s e l f . led . gnd)
7 s e l f . connect (s e l f .mcu . d i g i t a l [0] , s e l f . led . i o)

Figure 4: Example code defining the Blinky circuit Block. Within
the block’s contents, lines 4 and 5 instantiate the sub-blocks for
the Nucleo microcontroller board and a discrete LED. Lines 6 and
7 then make the signal and ground connections.

1 class I nd i ca to rLed (GeneratorBlock) :
2 def _ _ i n i t _ _ (s e l f) −> None :
3 super () . _ _ i n i t _ _ ()
4 s e l f . i o = s e l f . Por t (D i g i t a l S i n k ())
5 s e l f . gnd = s e l f . Por t (Ground ())
6
7 def generate (s e l f) :
8 super () . generate ()
9 TARGET_CURRENT_MIN = 0 .001; # 1 mAmp

10 TARGET_CURRENT_MAX = 0 .010; # 10 mAmp
11 vo l tage = s e l f . get (s e l f . i o . ou tpu t_h igh_vo l tage)
12 s e l f . led = s e l f . Block (Led ())
13 s e l f . res = s e l f . Block (Res is to r (
14 res i s tance =(vo l tage / TARGET_CURRENT_MAX,
15 vo l tage / TARGET_CURRENT_MIN)))

Figure 5: Simplified code for the indicator LED subcircuit. Lines 4
and 5 define the external ports by their types, while lines 12 and
13 define the internal blocks. Notably, as shown on line 11,
generators can access solved values like input digital logic
thresholds, and use those to automatically size internal blocks like
the resistor. We omit the internal connections for brevity.

LBW019, Page 4

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Figure 6: Prototype design
explorer GUI with the Blinky
example from Figure 2 open. The
tree view on the top left lists the
elements of the hierarch block
diagram and allows navigation
through the design. The tree view
on the top right lists refinements for
the currently selected Resistor,
with the surface-mount
ChipResistor selected and the
resulting constraint listed in the
center right. The bottom box
displays details of the selected
element.

template that can be re-used, while objects represent indi-
vidual instances. The generator defining the block’s con-
tents are written as member functions, and can call meth-
ods to instantiate sub-blocks, ports, and parameters.

Subcircuits and generators are defined similarly, as shown
in Figure 5. The same also mostly holds true for links, given
their block-like structure.

Links and Inference
Link types are automatically inferred based on the types
of ports being connected, freeing the user from needing
to manually specify this information. Strongly typed links
can detect and prevent mistakes like nonsensical electrical
connections, such as between power and data wires. Fur-
thermore, links can also provide rules for parameter propa-
gation and limits, for example for output voltages and rated
maximums, though verification remains a work-in-progress.

We do caution that an electrically correct circuit may not
be functionally useful. While connecting the UART data
ports of two GPSes together is electrically valid and allowed
in our model, the result is nonsensical. Future work could
model higher domains, such as firmware and dataflow.

GUI
Prior work [10] has highlighted the need to balance control
and transparency with automation, so our system features a
GUI to allow interaction with a generated design.

The current prototype, shown in Figure 6, illustrates the
core required functionality of providing visibility into the sys-
tem’s reasoning through displaying solved values. Further-
more, the ability to set value constraints and select block
subtypes allows the HDL design to stay at a high level while
specifics can be set interactively. For example, in a design

that calls for a generic resistor, a user can select a particu-
lar sub-type like a surface-mount resistor.

Ongoing work includes refining the interface to be more
usable, such as by supplementing the tree view with an
automatically laid out hierarchy block diagram [5].

Board Generation
As subcircuits are fully defined at lower levels of the hier-
archy block diagram, the overall design is equivalent to a
schematic. Our system can export this netlist file describ-
ing components and their connectivity, which can then be
imported into KiCad’s [8] board layout tool. Otherwise, we
currently do not address board layout.

As the overall hardware design flow involves a back-and-
forth between schematic and layout, we use name stabil-
ity to allow updates without losing a work-in-progress lay-
out. However, additional strategies are needed when name
changes are necessary, such as when refactoring.

Example Applications
We demonstrate the capabilities of our system by construct-
ing a few example designs, then validating the functionality
of the resulting hardware.

Simon
An extension of the above Blinky example is the Simon
memory game, which consists of four colored light-up but-
tons and an accompanying audio tone for each color.

We use a socketed Nucleo board as both a power source
and microcontroller. Since the LEDs in the dome buttons
require 12 volts while the Nucleo can only supply 5 volts,
we use a boost converter to generate the necessary voltage
and a MOSFET circuit to drive the illumination from a 3.3
volt pin. We further added a speaker driver, speaker con-

LBW019, Page 5

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Figure 7: The Simon PCB
(bottom-left) with connected
buttons (right). Our system is able
to generate the 5v to 12v boost
converter subcircuit to drive the
LEDs in the dome buttons.

Figure 8: The datalogger PCB.
Our system supports complex
subcircuits such as
microcontrollers application circuits
and analog power generators such
as the current-limited
supercapacitor backup.

nector, and debugging tricolor LED. In terms of structure,
each of these was a library sub-block.

Overall, the top-level HDL for Simon is 58 lines of code.
Of note is that the boost converter instantiation was only
one line to specify the controller chip and desired output
voltage – minimizing design effort for an element where we
do not care about the specific implementation. The boost
converter generator library encapsulates the details and
process of component sizing.

Datalogger
A more complex design is the datalogger, a board that
records data from a Controller Area Network (CAN) inter-
face to a SD card. In contrast to Simon’s socketed micro-
controller board, this drops a microcontroller chip and its
supporting components directly on the board.

In addition to the mandatory CAN interface, SD card socket,
microcontroller, and power conditioning blocks, this design
also includes a supercapacitor-based backup power supply.
Similar to Simon’s boost converter generator, the superca-
pacitor backup block generates a current-limited power sup-
ply and automatically sizes internal elements like transistor
and reference voltage divider.

Libraries
As shown in the above examples, libraries are what ulti-
mately enables significant design automation. Though we
have built a library including many common parts and sub-
circuits, it is far from complete. While a database of simple
parts might be easily parse-able from a parametric prod-
uct table, complete details for more complex parts are often
only available in PDF datasheets.

Mixed-initiative approaches can help alleviate this process,
allowing users to scan datasheets and select individual ta-

bles which can then be automatically parsed. While archaic
encoding or formatting in some datasheets complicates the
process, using external tools like Tabula [14] and DocParser
is a potential solution.

Overall, collaboration from a large community may be key
to building a critical mass of parts to support the needs of
users.

Conclusion
Building upon recent work examining how electronics de-
signers work and proposing a hierarchy block diagram ab-
straction, we implemented a circuit design tool based on
those principles and which is capable of providing mean-
ingful design automation. System designers can compose
systems using high-level blocks, while experienced engi-
neers can provide the implementation of those blocks as re-
usable generators, encapsulating their design methodology
in executable code. We demonstrate the capability of this
system though example designs, where complex subcircuits
are generated from high-level specifications.

Ultimately, we hope this system both enables existing en-
gineers to work more efficiently, and extends the reach of
novices in building custom, personalized devices.

Acknowledgments
This work was supported in part by NSF CNS 1505773
and CNS 1822332, Synergy: Collaborative: CPS-Security:
End-to-End Security for the Internet of Things, in part by
the CONIX Research Center, one of six centers in JUMP,
a Semiconductor Research Corporation (SRC) program
sponsored by DARPA, and in part with funds from the Paul
and Judy Gray Alumni Presidential Chair in Engineering
Excellence.

LBW019, Page 6

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

REFERENCES
[1] Fraser Anderson, Tovi Grossman, and George

Fitzmaurice. 2017. Trigger-Action-Circuits: Leveraging
Generative Design to Enable Novices to Design and
Build Circuitry. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’17). ACM, New York, NY, USA,
331–342. DOI:
http://dx.doi.org/10.1145/3126594.3126637

[2] Jonathan Bachrach, David Biancolin, Austin Buchan,
Duncan W Haldane, and Richard Lin. 2016. JITPCB.
In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE,
2230–2236. DOI:
http://dx.doi.org/10.1109/IROS.2016.7759349

[3] circuito.io. 2020. Circuit Design App for Makers-
circuito.io. (Feb. 2020). https://www.circuito.io/

[4] EDASolver. 2020. EDASolver - Automatic component
selection and pin matching. (2020).
https://edasolver.com

[5] Eclipse Foundation. 2020. Eclipse Layout Kernel.
(2020). https://www.eclipse.org/elk/

[6] Gumstix. 2018. Geppetto. (2018).
www.gumstix.com/geppetto/

[7] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A.
Magyar, D. Kim, C. Schmidt, C. Markley, J. Lawson,
and J. Bachrach. 2017. Reusability is FIRRTL ground:
Hardware construction languages, compiler
frameworks, and transformations. In 2017 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD). 209–216. DOI:
http://dx.doi.org/10.1109/ICCAD.2017.8203780

[8] KiCad. 2020. KiCad EDA. (2020).
http://kicad-pcb.org/

[9] André Knörig, Reto Wettach, and Jonathan Cohen.
2009. Fritzing: A Tool for Advancing Electronic
Prototyping for Designers. In Proceedings of the 3rd
International Conference on Tangible and Embedded
Interaction (TEI ’09). Association for Computing
Machinery, New York, NY, USA, 351–358. DOI:
http://dx.doi.org/10.1145/1517664.1517735

[10] Richard Lin, Rohit Ramesh, Antonio Iannopollo,
Alberto Sangiovanni Vincentelli, Prabal Dutta, Elad
Alon, and Björn Hartmann. 2019. Beyond Schematic
Capture: Meaningful Abstractions for Better
Electronics Design Tools. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems (CHI ’19). Association for Computing
Machinery, New York, NY, USA, Article Paper 283, 13
pages. DOI:
http://dx.doi.org/10.1145/3290605.3300513

[11] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo
Sun, Jun Gong, Teddy Seyed, Xing-Dong Yang, and
Bing-Yu Chen. 2019. AutoFritz: Autocomplete for
Prototyping Virtual Breadboard Circuits. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). Association
for Computing Machinery, New York, NY, USA, Article
Paper 403, 13 pages. DOI:
http://dx.doi.org/10.1145/3290605.3300633

[12] Brant Nelson, Brad Riching, and Josh Mangelson.
2012. Using a Custom-Built HDL for Printed Circuit
Board Design Capture. PCB West 2012 Presentation.
(2012).

LBW019, Page 7

http://dx.doi.org/10.1145/3126594.3126637
http://dx.doi.org/10.1109/IROS.2016.7759349
https://www.circuito.io/
https://edasolver.com
https://www.eclipse.org/elk/
www.gumstix.com/geppetto/
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://kicad-pcb.org/
http://dx.doi.org/10.1145/1517664.1517735
http://dx.doi.org/10.1145/3290605.3300513
http://dx.doi.org/10.1145/3290605.3300633
https://circuito.io
https://circuito.io

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[13] Rohit Ramesh, Richard Lin, Antonio Iannopollo,
Alberto Sangiovanni-Vincentelli, Björn Hartmann, and
Prabal Dutta. 2017. Turning Coders into Makers: The
Promise of Embedded Design Generation. In
Proceedings of the 1st Annual ACM Symposium on
Computational Fabrication (SCF ’17). ACM, New York,

NY, USA, Article 4, 10 pages. DOI:
http://dx.doi.org/10.1145/3083157.3083159

[14] Tabula. 2020. Tabula. (2020).
https://tabula.technology/

LBW019, Page 8

http://dx.doi.org/10.1145/3083157.3083159
https://tabula.technology/

	Introduction
	Related Work
	System Design
	Model and Abstractions
	Hardware Construction Language
	Links and Inference

	GUI
	Board Generation

	Example Applications
	Simon
	Datalogger
	Libraries

	Conclusion
	Acknowledgments
	REFERENCES

