
23September 2018 | Volume 22, Issue 3 GetMobile

[MAKERS]

Joshua Adkins, Branden Ghena, Prabal Dutta University of California, Berkeley	 Editors: Prabal Dutta and Iqbal Mohomed

SIGNPOST: Enabling City-Scale
Sensing for Citizens and Scientists

The world’s population is flocking to city centers at an increasing rate, testing the ability of urban
planners and local governments to address new problems in transportation, waste disposal, urban
health, and public safety. While one could imagine solutions enabled by an emerging class of smart

sensors, current attempts at such systems are difficult to deploy and single purpose in their design. If we
expect researchers and citizen-scientists to participate in the data-driven rejuvenation of our urban spaces
(and we should, since they are the ones experiencing the day-to-day problems), we must lower the bar to
deploying sensors and accessing smart-city data. Towards this goal, we present Signpost, an infrastructure-
free sensing platform that aims to enable easy, multi-use sensor deployments for citizens, and researchers
who have little expertise in building smart and connected sensors.[1]Ill

us
tr

at
io

n,
 is

to
ck

ph
ot

o.
co

m

GetMobile September 2018 | Volume 22, Issue 324

[MAKERS]

EASING DEPLOYMENT
The Signpost platform was designed around
the idea that the largest impediment to city-
scale sensing is the difficulty of deploying
sensors. Existing commercial platforms
designed GE and Cisco, and research
projects, such as the Array of Things [4],
all require access to mains power, often
necessitating the use of electricians and
bucket trucks for installation.

While the importance of these mains-
powered sensors in the broader smart-city
ecosystem should not be understated – high
performance, mains-powered nodes are
necessary for some applications – the high
deployment burden they impose limits
the situations in which they excel. The
per-sensor costs of placement and wiring
hinders the use of these platforms for
dense deployments; the up-front logistical
hurdles make them difficult to rely on for
experiments with multiple iterations.

The Signpost platform (Figure 1) offers
an alternate design point, and only has
two deployment dependencies: an existing
communications network (such as cellular)
and the pervasive sign posts to which it
mounts. Rather than relying on mains
power, Signpost harvests energy from its
vertically mounted solar panel, and can be
easily deployed in less than five minutes by
a single person with a wrench.

PROVIDING A SENSING
INFRASTRUCTURE
Unlike other smart city sensors, Signpost
serves as the infrastructure on which
city scale sensing is deployed. Up to five
pluggable sensor modules connect to the
Signpost using a standard electromechanical
interface. Through this interface, they are
provided with the key resources necessary
for city-scale sensing. These resources –
power, networking, storage, time, location,
synchronization, and higher-performance
compute – were identified by analyzing the
building blocks that repeatedly appeared in
past city-centric sensor deployments. The
resources are provided by core Signpost
components, which are themselves modular.

By embracing modularity, the Signpost
platform can adapt to emerging applications
and support rapid iteration of sensor
hardware. The modularity of core platform
components enables Signpost to take
advantage of improving technology without

building and deploying a new sensing
platform. The colocation of multiple sensing
modalities on a single Signpost allows multiple
sensor modules to serve a single application
and encourages the sharing of deployment
costs between multiple applications. Finally, by
providing and sharing key resources among
the sensor modules, Signpost eliminates
their reimplementation for every sensor
deployment, a task that is time-consuming
for experienced engineers and difficult or
impossible for citizens and domain scientists
without embedded design experience.

SUPPORTING DEVELOPERS
Simply removing the need to reimplement
the hardware for common services, such
as networking and storage, is not enough
to make these services accessible to those
without embedded design experience.
Writing firmware drivers for all of these
components would still pose a significant
barrier to entry. To address this issue,
Signpost makes its system services available
through remote procedure calls that occur
over a sensor module’s common electrical
interface. Great efforts have been taken
to ensure that this interface remains
simple and only requires peripherals that
are ubiquitous on embedded hardware;
specifically I2C and GPIO are needed for
basic operation, but other features such
as a GPS-based pulse-per-second (PPS)
signal and a high-speed USB link to a
high-performance compute module are also
included (Figure 2).

In practice, this means that if developers
implement a hardware interface layer
consisting of I2C and GPIO functions, they
get access to all of the Signpost resources.
These resources are exposed to applications
as a set of library functions (Figure 3).
The hardware interface layer is already
implemented for common embedded
platforms used by the maker community,
including Arduino [2] and MBed OS [3]
in addition to Tock, a research operating
system [5].

Similar to the API exposed by Particle
IoT [6], the Signpost backend handles the
routing of data between a sensor module
and the cloud; that data is tagged with
location and timestamps by the Signpost
platform. To access a sensor module’s data
stream, developers simply subscribe to the
appropriate topic over MQTT. We hope
that by simplifying both the hardware
and software interfaces, Signpost can be
accessible to both scientists developing new
sensors and makers who have experience
with off-the-shelf hardware components.

DRAWBACKS OF
ENERGY HARVESTING
The deployability that Signpost gains with
its energy harvesting design comes at a
cost – the limited amount of energy that
can be harvested from a solar panel reduces
the sensing modalities and applications
that Signpost can support. To quantify the
amount of energy that could be consumed
by each of the five sensor modules, we

FIGURE 1. The Signpost platform easily mounts to existing street sign posts, harvests
energy from an integrated solar panel, and provides pluggable sensor modules with power,
communications, processing, storage, time, and location. Signpost is open source, with all
hardware and software available on Github.

25September 2018 | Volume 22, Issue 3 GetMobile

[MAKERS]

FIGURE 3. The Signpost library calls. Sensor modules can access
Signpost resources through this API.

FIGURE 4. Fraction of weeks when a sensor module can expect a minimum power income at different latitudes and cardinal directions.
Power available to sensor modules varies by nearly two orders of magnitude.

FIGURE 2. The standard header interface for a Signpost sensor
module. The only requirements for access to the Signpost resources
are a I2C bus and several GPIO pins.

generate a data-driven model of solar
energy harvesting potential for Signposts
facing different cardinal directions at
different locations across the United States
(Figure 4). When compared to the energy
harvested on deployed Signposts, this
model under-predicts harvesting potential
by 3% on sunny days and 22% on cloudy
days. From the model, we can see that the
average power a sensor module may draw
over the course of a week to achieve 95%
reliability varies by nearly two orders of
magnitude, from only 4 mW for a North
facing Signpost in Seattle, WA, to 147 mW
for a South facing Signpost in San Diego,
CA. A sensor module expecting only
50% reliability could draw 120-210 mW
depending on location and direction.

While this power budget may be
problematic for some sensing modalities

and deployment locations, we provide
developers with several Signpost library
calls to help manage these constraints.
Specifically, rather than requiring sensor
modules to enter low-power sleep states,
Signpost allows modules to request that they
be powered off for a specified period of time.

Combining power constraints with
multi-tenancy introduces an additional
problem of resource allocation. To ensure
the fair sharing of harvested energy,
Signpost monitors the energy used by each
sensor module and the energy consumed
by a module’s use of platform resources. For
instance, the energy used by a networking
call is measured and attributed back to a
specific sensor module; the energy required
to support time and location services is split
among the sensor modules requesting those
services. Signpost then provides software

methods by which each module can query
their available share of energy and their
average power consumption.

EXISTING HARDWARE &
APPLICATIONS
We create a set of initial sensor modules and
deploy them on Signposts on and around
campus at the University of California,
Berkeley. These modules can sense motion
using microwave radar; audio volume at
several frequency bands; environmental
indicators, such as humidity, temperature,
and pressure; and RF spectrum power from
15-2700 MHz. These modules serve not only
as example hardware for developers creating
their own sensors, but they also are running
a suite of example applications, as well, which
can help to give a sense of the capabilities of
the platform given its power constraints.

GetMobile September 2018 | Volume 22, Issue 326

[MAKERS]

FIGURE 6. The desktop development kit with
two sensor modules and the Signpost control
module.

FIGURE 5. The power used by different example applications, and how that power is split
between local computation, local sensing, platform communication and platform time services.

To aid the reader, we divide each application,
showing the average power draw and
breakdown between local computation, local
sensing, the platform communication service,
and the platform time service (Figure 5).

Weather Monitoring: This application
samples temperature, humidity, and pressure
and publishes them to the Signpost backend
before using the Signpost library to power
itself off for four minutes. These measure-
ments are posted to Weather Underground
[7] by an application running in the cloud.

Vehicle Counting: The audio volume
sensor transmits average volumes of seven
different frequency bands every second.
In the cloud, a service then analyzes these
volumes and counts short-duration peaks
(indicative of a car driving by) to estimate
the amount of traffic near a Signpost.

RF Spectrum Sensing: The spectrum
sensor samples the TV white space channels
(every 6 MHz from 470-830 MHz) for 30
seconds of every three minutes. It then
calculates the minimum, maximum and
average energy on each of these channels
and transmits the measurements to the
Signpost backend. Like weather monitoring,
it saves energy by having Signpost power
off the module when it is inactive.

Motion Detection: This application
constantly attempts to sense motion using
the microwave radar sensor. Because of the
sensor’s high power consumption, it is often
turned off for using greater than its fair share
of available energy, and subsequently turned
on when Signpost has harvested more energy.

In addition to these sensor modules and
applications, we have also created a desktop
development kit (Figure 6). This allows
developers to test hardware and software
without a complete Signpost platform.
The development kit includes debugging
features, such as serial connections to every
module and uses the developer’s computer
to emulate network connectivity.

CLOSING THOUGHTS
We envision a future in which Signposts are
deployed pervasively throughout several test
communities, if not more broadly, and we
hope these testbeds are used for prototyping

smart city applications, running long-term
experiments on public health and safety,
and ultimately improving the efficiency
of the communities in which they are
deployed. We also believe that our efforts
toward modularity and accessibility could
be leveraged in other smart city sensing
infrastructure, including higher-performance,
mains-powered sensing platforms.

We are only going to achieve this future
with buy-in from cities and their citizens.
Towards this goal, we are actively seeking
involvement from the academic and maker
communities, specifically those who want to
be involved in designing and building sensor
modules. We are also working to make data
from existing sensor modules available
to those who wish to write city sensing
applications. All hardware and software is
available at github.com/lab11/signpost. n

Joshua Adkins is a third-year PhD student in
Electrical Engineering and Computer Science at
the University of California, Berkeley. His current
research is focused on easing the programming
and deployment of dense sensor networks.
He received a BS in Computer Engineering from
the University of Michigan.

Branden Ghena is a PhD student at the
University of California, Berkeley, studying
embedded systems. His research focuses on
the design of wireless network protocols that
allow for low-power, high-reliability ubiquitous
communications between resource-constrained
devices, users, and the Internet.

Prabal Dutta is an associate professor of
Electrical Engineering and Computer Sciences
at University of California, Berkeley. His research
interests straddle the hardware/software
interface and include wireless, embedded,
networked, and cyber-physical systems.
He received a PhD in Computer Science from
the University of California, Berkeley.

REFERENCES
[1] Joshua Adkins, Branden Ghena, Neal Jackson,

Pat Pannuto, Samuel Rohrer, Bradford Campbell,
and Prabal Dutta. 2018. “The signpost platform
for city-scale sensing.” In IPSN'18.

[2] Arduino. 2017. Arduino website. arduino.cc.
[3] Arm. 2017. Mbed OS developer website.

os.mbed.com.
[4] Charles E. Catlett, Peter H. Beckman, Rajesh

Sankaran, and Kate Kusiak Galvin. 2017.
“Array of things: a scientific research instrument
in the public way: Platform design and early
lessons learned.” In SCOPE'17.

[5] Amit Levy, Daniel B. Giffin, Bradford Campbell,
Branden Ghena, Pat Pannuto, Prabal Dutta, and
Philip Levis. 2017. Multiprogramming a 64 kB
computer safely and efficiently.” In SOSP'17.

[6] Particle. 2018. Particle website. particle.io.
[7] Weather Underground. 2018. Weather

Underground Website. wunderground.com.

 0

 50

 100

 150

 200

 250

Radar Vehicle RF Spectrum Weather

A
ve

ra
ge

 P
ow

er
 (m

W
)

Sensing
Local Computation

Communications Service
Time Service

 60
 62
 64
 66

0.0
0.5
1.0
1.5

