
Beyond Schematic Capture
Meaningful Abstractions for Better Electronics Design Tools

Richard Lin, Rohit Ramesh, Antonio Iannopollo,
Alberto Sangiovanni Vincentelli, Prabal Dutta, Elad Alon, Björn Hartmann

University of California, Berkeley
{richard.lin,rkr,antonio,alberto,prabal,elad,bjoern}@berkeley.edu

OVLFY3C7
Part Number Size

APG1005SYC-T
5988140107F

5mm
0402
0805

Vf
2 V
2.05 V
2 V

LED

Button
Micro-

controller

System Architecture

Physical Device
Parts Selection

Iteration

Micro-
controller

ATmega32u4
Part Number Core

LPC1549
FE310-G000

AVR
ARM CM3
RV32IMAC

+3.3v

D0
D1

GND

ATmega

...

Ideas and
Requirements

Prototype
PCB

Hand-built
Prototypes

Final
PCB

U1

S
W
1

R1

J1

R2

D
1

Schematic
Capture

- or -

paper, drawing software parts libraries, catalogs, spreadsheetsTools
Used

Design
Concerns user stories

functional specification
implementation exploration

verification
documentation

supporting circuitry
cost, manufacturability

system integration
cost

component availability and sourcing

more abstract, high-level more concrete, low-level
verification

Design
Flow

breadboards EDA suites: Altium, EAGLE, KiCAD

Figure 1: The electronics design flow, as described by our participants. Users start with an idea, refine that into a system
architecture, and then iterate physical prototypes. Parts selection happens throughout the process.While certain steps require
linear progression, iteration and revision of earlier stages also happen. Overall, EDA tools only support a small part of this
process, and moving between steps was a major source of friction.

ABSTRACT
Printed Circuit Board (PCB) design tools are critical in help-
ing users build non-trivial electronics devices. While recent
work recognizes deficiencies with current tools and explores
novel methods, little has been done to understand modern
designers and their needs. To gain better insight into their
practices, we interview fifteen electronics designers of a
variety of backgrounds. Our open-ended, semi-structured
interviews examine both overarching design flows and de-
tails of individual steps. One major finding was that most
creative engineering work happens during system architec-
ture, yet current tools operate at lower abstraction levels
and create significant tedious work for designers. From that
insight, we conceptualize abstractions and primitives for
higher-level tools and elicit feedback from our participants

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5970-2/19/05.
https://doi.org/10.1145/3290605.3300513

on clickthrough mockups of design flows through an exam-
ple project. We close with our observation on opportunities
for improving board design tools and discuss generalizability
of our findings beyond the electronics domain.

CCS CONCEPTS
•Human-centered computing→Human computer in-
teraction (HCI); •Applied computing→Computer-aided
design.

KEYWORDS
printed circuit board (PCB) design; electronics design au-
tomation (EDA) tools; schematic capture; PCB layout.

ACM Reference Format:
Richard Lin, Rohit Ramesh, Antonio Iannopollo,, Alberto Sangio-
vanni Vincentelli, Prabal Dutta, Elad Alon, Björn Hartmann. 2019.
Beyond Schematic Capture: Meaningful Abstractions for Better
Electronics Design Tools. In CHI Conference on Human Factors in
Computing Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow,
Scotland UK. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3290605.3300513

1 INTRODUCTION
Interactive products are everywhere in modern life — they
give us ways to interact with processes and technologies

https://doi.org/10.1145/3290605.3300513
https://doi.org/10.1145/3290605.3300513
https://doi.org/10.1145/3290605.3300513

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK R. Lin et al.

that are impossible to directly control. A microwave lets you
control a powerful source of electromagnetic radiation to
warm up your soup. A thermostat can measure the warmth
of a room and provide you, not only a way to see that mea-
surement, but also ways to change the temperature to your
liking. While interactive devices span many application do-
mains, often at their core are electronics, built on printed
circuit boards (PCBs) and designed using electronic design
automation (EDA) tools. The ubiquity of PCBs means that
improvements to their design processes in general can be
transformative.

A variety of board-level EDA tools exist for different user
groups: EAGLE [4] is largely geared towards hobbyists; Ki-
Cad [19] is open source; while Altium [1], Cadence Alle-
gro [9], and Mentor Xpedition [26] are geared towards pro-
fessionals working on complex projects. Overall, the still-
dominant UI paradigm for these tools was established in
the 1980s: users start by designing the circuit in graphical
schematic capture tools, interactively adding and connecting
abstract representations of individual electronic components.
They then proceed to board layout, where they place physical
representations of circuit components and route conductive
traces between pins. Most tools can also perform automated
analyses such as schematic sanity and layout manufactura-
bility checks, while advanced tools may offer signal integrity
and electromagnetic compatibility verification.

However, tools have not kept pace with the shifting com-
munity of designers or the new opportunities afforded by
more powerful computers and algorithms. Online resources,
beginner-friendly platforms like Arduino [3], and falling
costs of both parts and fabrication means that the barrier
to entry for electronics has never been lower. While bread-
boarding is both common and accessible for beginners, the
resulting devices are fragile and bulky. Moving beyond pro-
totyping usually means using EDA tools to build PCBs. Yet,
these tools have stayed fundamentally the same over the
years, without providing the design assistance that would
serve these new communities of designers.
Altogether, these changes have prompted recent explo-

ration of novel approaches towards PCB EDA tools, which
exploit modern techniques and the rapid growth of available
computational power [5, 30]. We argue that in order to be
successful, such work must be grounded with empirical stud-
ies about user needs. Yet, the bulk of the published HCI work
on usability in EDA suites dates back to the early 1980s, as
systems moved away from text-based schematic entry and
towards the currently-dominant graphical schematic capture
paradigm [23, 32]. It is time for us to start searching for the
next paradigm, and ensuring that it will support designers’
needs for years to come.

ResearchQuestions
Our goal is to inform the development of novel EDA tools,
and we primarily seek to discoverwhat approaches to bet-
ter design tools are fruitful, and why.
As we believe that effective tools must fit the needs of

users, it is crucial that we understand current design prac-
tices. This includes understanding the design flows from
idea to physical device. Such a broad investigation allows
us to take a holistic look at the process, including steps that
are underserved by current tools.

For each step in the flow, we also delve into which tools
(if any) are used, whether they work well, and where
the pain points are. This deeper look reveals details of de-
signers’ thought processes, intermediate goals within their
workflows, and their interactions and frustrations with ex-
isting tools.

We then use what we learn to envision plausible, alternate
tools that can better support these design flows. By examin-
ing participant feedback with mockups of our prospective
designs, we look more closely atwhat designers find valu-
able, and where future tool builders should focus.

Contributions
Our overall contributions consist of a formative interview
study with 15 participants to assess current practices and
problems (in Sections 4 and 5), followed by the design of a
tool concept that addresses major issues (in Section 6), and
ending with user feedback on a mockup of the tool concept
(in Sections 7 and 8). This overall methodology follows the
example of prior papers that combine formative studies with
concept designs for better tools in other domains [17, 27].

2 RELATEDWORK
Foundations
Work exploring human factors in PCB design tools appeared
as early as the 1970s. One major issue at the time was the
awkwardness of punch card or text based schematic entry.
Matthews [23] criticized tools of the time as “operator-

aided computers”, and describes an interactive graphical
schematic entry system similar to today’s mainstream tools.
Despite the requirement formore user time on then-expensive
computing resources, this system both reduced the overall
design time and eliminated an error-prone punch card step.

Shiraishi regarded interactive schematic drawing as time-
consuming, and his ICAD/PCB system [32] instead digi-
tizes hand-drawn schematics using pattern recognition tech-
niques. However, it focused on logic circuits and required a
standard schematic style.

Another common theme of EDA systems from this era was
integration between different steps, commonly schematic

Beyond Schematic Capture CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

entry, layout, and simulation. Reasons included the time, cost,
and potential for errors from manual translation [6, 21, 23].

Systems also explored methods for component placement
and board routing. Varying degrees of automatic placement
were part of many tools, while other systems provided inter-
active feedback on manual placements [23, 32]. Autorouting
was also a research theme [6, 21–23], typically in conjunction
with interactive manual routing.

Rager and Weiner [29] did an in-depth study on dense
board layouts, recommending an interactive system where
a human guides automated processes, but is provided with
powerful assistive tools when lower-level manual interven-
tion is needed.

Recent Work
With a dominant paradigm established, later research litera-
ture focused on deepening technical aspects such as better
autorouting techniques [14], while new user-facing features
were predominantly introduced by a growing industry. In-
house studies of tool usability for commercial software gen-
erally are not available to the academic community.

The rise of the maker movement has spurred some recent
work on examining the use EDA tools by different commu-
nities. Mellis [25] observed novices over the course of a six
week workshop as they were taught embedded design and
built boards. While it is possibly the most comprehensive
examination involving modern EDA tools and practices so
far, the focus on novices sets a low complexity ceiling and
does not address needs of more advanced users.
Beyond board design tools, some recent work focuses

on electronics prototyping. Fritzing [20] aims to ease the
transition from breadboards to PCBs, CircuitStack [37] adds
a printed connectivity layer to breadboards, and Crossed
Wires [8] examines issues in breadboard circuit construction.

A key research direction has been to develop augmented
breadboards, as many students start building circuits on
breadboards. These include measuring and visualizing volt-
ages [12] and current flows [39], and detection of inserted
components through active probing [40]. Bifröst [24] further
combines code instrumentation and logic analyzer circuit
tracing for examining the hardware-software boundary.

There has also been work on instrumentation outside the
structure of breadboards, such as using augmented reality
to overlay simulation data onto a physical device [11] or
linking a probed point to a schematic pin [15].
Such a large body of work hints at the many problems

with modern electronics practices, but many of these novel
systems only seek to improve a specific part of the process
instead of examining design holistically.

Novel Approaches to PCB Design
Recently, there has also been work on radically different
paradigms for board design.

One end of the spectrum takes inspiration from hardware
description languages like Verilog and hardware construc-
tion languages like Chisel [18], both of which improve design
by raising the level of abstraction. PHDL [28] is a Verilog-
like language that provides for module-level re-use with a
limited degree of parameterization. JITPCB [5] takes the con-
cept one step further by embedding hardware construction
functionality in a general-purpose programming language,
allowing more complex, user-defined circuit generators.
On the other end are highly automated tools, which gen-

erate circuits from high-level specifications. EDASolver [13]
takes in a tree describing the basic structure of an embedded
device with requested peripherals, and produces a circuit
meeting those requirements. EDG [30] further advances the
concept, inferring both a compute block and interface el-
ements from a list of requested peripherals and external
connections. Both systems ensure correctness by reasoning
over electronic quantities and limitations including voltages,
currents, and absolute maximum ratings.

Trigger-Action-Circuits [2] takes design inputs at an even
higher, behavioral level, and allows users to explore trade-
offs between a variety of generated candidate designs. Of
these recent approaches, it is the only one with a user study.

For the others, it is unknown if their specification formats
and abstractions are suitable for current designers and ad-
dress pain points. Examples for all these systems also tend to
be quite simple, falling within the capabilities of an interme-
diate hobbyist designer. Applicability towards more complex,
professional designs and requirements is uncertain.

Creativity Support Tools
EDA tools are part of the larger class of creativity support
tools, which has received attention in the HCI literature with
topics ranging from theoretical foundation, observations,
and suggestions [33–35]. In particular, Resnick et al. [31] de-
scribe a set of twelve design principles and recommendations
for these tools. However, these high-level principles must be
grounded with domain knowledge and user feedback to for-
mulate concrete, actionable improvements. Our paper seeks
to build this bridge to the specific domain of EDA tools.

3 PARTICIPANTS
We conducted an interview study with 15 participants (14
male), of which 10 returned for the follow-up mockup study.
While small, this group covers a wide variety of skill levels,
design types, and EDA tools used. Critically, both profes-
sional and hobby users are included. A summary of partici-
pants’ backgrounds is shown in Table 1.

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK R. Lin et al.

Participant Age Motivations EDA tool Design discussed Mockup study
P01 late 20s school, hobby EAGLE LED board Yes
P02 early 20s school, hobby EAGLE analog feedback-controlled heater Yes
P03 early 20s school, job (startup) EAGLE Arduino motor controller No
P04 early 20s school, research, hobby EAGLE music recording system Yes
P05 late 20s research, side jobs, hobby EAGLE robotics Yes
P06 early 30s research, hobby EAGLE electrical muscle stimulation No
P07 early 20s school, hobby, job (industry engineer) KiCad IO controller Yes
P08 early 30s job (industry engineer), hobby KiCad educational kits Yes
P09 mid 30s research, school EAGLE educational blocks kit Yes
P10 mid 30s job (industry engineer), hobby EAGLE breakout board Yes
P11 late 20s job (research engineer), hobby Altium motherboards for chip tapeouts Yes
P12 early 20s job (industry engineer), hobby Altium power converter Yes
P13 late 20s research EAGLE embedded development board No
P14 late 20s job (industry engineer), hobby DipTrace debug adapter No
P15 late 30s job (industry engineer), hobby Altium general consumer electronics No

Table 1: Summary of study participants.

All participants are familiar with the design process from
idea to PCB, and all but one have completed at least one full
project consisting of all those steps.
We recruited participants using two methods: personal

referrals (7 participants), and relevant email lists (8 partici-
pants) such as those of a local makerspace, university design
courses, and student groups. While the only criteria was
some experience building PCBs in EDA tools, we did not
recruit those working on highly complex designs to avoid
a long tail of specialized issues. Participants were compen-
sated with a $20 gift card for each of the interview study and
mockup study.

4 INTERVIEW STUDY: METHODOLOGY
Interviews were semi-structured and start with background
information, including motivations, designs, and views of
flow from idea to final device. Based on those responses, we
then go into depth on each step in the flow, examining tools
used, pain points, references used, and general suggestions or
comments. Interviews averaged 90 minutes with a standard
deviation of 29 minutes, and were conducted either in-person
at the participant’s workplace or through videoconference.

Utilizing the principles of contextual inquiry [7], we asked
for an example design to ground discussions when possi-
ble. A majority of participants were able to do so, but some
could not because of confidentiality and lost files. Instead,
we asked them to either visualize their designs or bring up
stock schematic and board layout images.

Interviews were conducted by one interviewer and audio-
taped with the participant’s consent. One researcher, experi-
enced with board design and familiar with most of the tools
discussed, then conducted an open coding phase over the

transcriptions, and further grouped codes into related topics
[38]. From these, we looked for themes that both had design
implications for EDA tools and either had support among
multiple participants or were notable outliers.

5 INTERVIEW STUDY: FINDINGS
Participants provided rich data on their design flows, and
how tools both did and did not support steps in those flows.

Design Flows
As shown in Figure 1, we broadly divide the design flow
into these steps, in order: specification finding, system ar-
chitecture development, and physical device iterations on a
variety of media (including breadboards, milled PCBs, and
commercially produced PCBs). Overall, each step incremen-
tally refines the design to be more concrete, until finally a
PCB can be produced. While there is a strict chain of de-
pendencies between steps, designers regularly iterated and
backtracked, especially in response to new information from
testing and design.

Specification Finding. Determining the requirements and
specifications for a device is a varied process that differed
from user to user and from project to project. Specifications
could capture a whole host of design goals including tech-
nical and functional requirements, user interactions, and
aesthetic goals. These could be captured as drawings on a
whiteboard, lists on documents and slide decks, or even a chip
design that the system is built around. In many cases, these
were living documents, with requirements and project scop-
ing being a back-and-forth process where each edit forces
many other changes down the line.

Beyond Schematic Capture CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

System Architecture Development. Specifications were then
refined into a system architecture, represented as a block
diagram. This serves as an intermediate step, translating
from requirements into an implementation strategy.
The key distinguishing feature of this step is support for

varying and mixed levels of abstraction.
Each engineer will have what feels right for
them. (P15)

Blocks in participants’ architecture diagrams ranged from the
generic ("accelerometer", "trigger circuit", or even just "sen-
sors") to the specific (part numbers and subcircuit schemat-
ics). Three participants had examples that mixed abstractions
on the same document, with some blocks being generic and
others having part numbers. Some diagrams also indicated
types of information flow between design elements such as
communication buses or protocol information.

Drawings were overwhelmingly the most common repre-
sentation: ten participants used either paper, whiteboards,
or graphics software like PowerPoint and Visio. Schematic
capture tools could also be used to produce nonfunctional
diagrams, and two mentioned occasionally using EDA tools
for this step. While digital tools gave designers powerful ad-
vantages including hyperlinking, cloud sharing, and backup,
the unconstrained nature of drawings was most important:

I feel very free to sketch in whatever language I
want and whatever higher level I want. (P06)

Overall, participants generally enjoyed this step:
I kind of like it. [...] It’s a very creative areawhere
somebody gives you requirements and you have
the freedom to meet them however you see fit.
[...] There’s the creative freedom that you don’t
have once you get to the schematic and the lay-
out. (P14)

Prototyping. Ten participants talked about a prototyping
phase, which could be done with solderless breadboards,
soldered protoboards, milled PCBs, or development boards
and kits. Agility was a goal, which rapid prototyping ma-
chines could help with:

I’m fortunate enough to have an LPKF [PCBmill]
to mill the boards with. And that’s been great.
Usually the board goes through three or four
revisions after soldering, so it’s not just that, oh,
I made one board and then it’s done. (P03)

More generally, others also iterated on PCBs for their projects,
with earlier boards acting as prototypes of the final design.

Prototypes were generally intended to validate some as-
pect of the design, though one participant also noted their
value for exploring concepts and implementations. Valida-
tion was not limited to electrical functionality: mechanical

characteristics, user feedback, and firmware development
were also goals.

Schematic Capture. Schematic entry is where PCB design
suites typically enter the design process.

Concerns here tended to be much lower-level, to the point
where issues of schematic layout and readability were as
common as those of circuit design and functionality. Partic-
ipants noted the value of the schematic as a reference for
later debugging or a document that should be shared with
others. Aesthetics aside, messy designs could also conceal
schematic errors or lead to bugs.
Mentions of manual transcription as part of the process

were common – from either physical prototypes, or combin-
ing block diagrams with vendor-supplied reference schemat-
ics. While circuit designs in the abstract saw re-use, the in-
ability to import data resulted in a time-consuming, tedious
process. Yet, this was not completely devoid of designer in-
put: reference designs may need to be adapted for the specific
application through parts selection and component sizing.
Quality and trust were also barriers to direct re-use: for ex-
ample, worries about the quality of random Internet parts
libraries or quirks in unofficial organization-wide reference
designs.

Overall, attitudes about schematic entry were less positive:
It’s more of a necessarily evil. I wouldn’t say
it’s a bad thing or a good thing, it’s just like, I
need to do this because otherwise I can’t get my
board. (P03)

Board Layout. Participant concerns during this phase were
also low level and often related to the physical design and
the final product: mechanical integration, signal integrity,
manufacturability, and cost.
Despite both schematic capture and layout being part of

the same EDA suite and schematic import being a common
feature in layout tools, moving between schematic and layout
was a notable source of friction. Five participants complained
about the initial placement of components in layout:

Altium kind of just barfs it out in a, not stacked
on top of each other, but there’s really not a lot of
rhyme or reason. [...] It all seems pretty random.
(P11)

Updating a layout after a schematic modification was also
noted as problematic.
Participants also frequently consulted datasheets, place-

ment rules, and routing guidelines during this step. While
parts libraries and design guidelines could be shared between
projects, layout re-use was rare. This was a result of limited
tool support and projects needing customized layouts.

Parts Selection. Parts selection happened throughout the
other stages of the design process. For example, critical parts

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK R. Lin et al.

may be specified on the block diagram, while common parts
like resistors may not be picked until just before ordering.

Concerns varied widely. Eight participants mentioned op-
timizing for cost, while anther worked in a price-insensitive
industry. Three also preferred parts that were immediately
available in their makerspace or research lab. Otherwise,
there was a long tail of other concerns, including hand-
solderability, stocking, RoHS compliance, or avoiding ven-
dors in organization-wide blacklists.

Overall, this phase could require significant manual work
and was deceptively difficult:

It’s something that I find to be challenging and I
think that people underestimate, [...] everyone’s
like, “eh, whatever, you’re just buying stuff” and
then they realize like “oh, actually, just buying
stuff is not super easy”. (P05)

Iteration. As alluded to throughout, many concerns do not
fit purely within one design phase. For example, partici-
pants mentioned going back and forth between layout and
schematic to optimize pin assignments for routing, or re-
designing the schematic to work around unavailable parts.

In general, while later steps are dependent on the results
of earlier steps, those results are not always locked down.
As an extreme example, one participant recalls being told:

Hey, you made this great device to guarantee
these specs, but we really need this new part
and it kind of breaks the spec that we gave you
before. Deal with it. (P12)

One strategy participants used to deal with this was defen-
sive design. This included defending against mistakes and
errors, such as by inserting optional jumpers between sub-
circuits to allow modification or removal of connections, and
defending against specification changes, such as by picking
a microcontroller with a wide peripheral set for flexibility.

Use of Automation
Participants talked about their experiences using automation
features provided by their tools. These features aim to min-
imize errors and ease tedious tasks, and fell into the broad
categories of design verification and routing assistance.

Design Verification. EDA suites generally include electrical
rules check (ERC), which checks schematics for common
issues, and design rules check (DRC), which checks layouts
for manufacturability.
ERC is commonly implemented by assigning pin classes

(for example: input, output, or bidirectional) and defining
a matrix of legal connections. Opinions were varied: six
mentioned using this feature (all with caveats), while five
specifically mentioned not using it. While electrical rules

checking has utility in catching some simple mistakes like
unconnected wires, the limitations were significant:

A lot of false negatives. And false positives. Very
few true positives. (P07)

On the other hand, no one mentioned skipping layout-
versus-schematic or DRC, both of which are generally very
accurate. Complaints were limited to bugs, like not catching
split ground planes.

Routing Assistance. Only two participants reported using
autorouting, all limited to simple designs. The general view
was that the benefits were not worth the time costs of setting
up the job properly or fixing poor results.

However, mixed-initiative, assistive routing features were
well-received. These include online or interactive DRC,which
does manufacturability checks on traces as they are placed,
and smart routing tools like push-and-shove, which allow the
trace being placed to intelligently displace existing traces.

The auto routers are [terrible], the auto place-
ments are [terrible]. It’s a highly manual process.
I like push and shove routing, those are great.
(P12)

Tool Selection
We also asked participants about why they chose their partic-
ular EDA suite. Community effects dominated: their choices
were influenced by the tools used by their friends or teams,
the tools taught in class, and the existence of an ecosystem
of tutorials and libraries. For those in industry, widespread
usage was also important for compatibility with contractors
and ease of hiring.
Those using or switching to KiCad noted the benefits of

open-source software, such as lack of vendor lock-in, ease
of sharing, and perpetual access to designs.

Summary
Overall, our main takeaway is that much of the interesting
and creative work happens through a combination of system
architecture and parts selection. Past that, schematic capture
tends towards elaborating the system architecture by mash-
ing in reference circuits, but the lack of design re-use results
in a tedious and time-consuming process.

Links across steps are also major sources of friction. While
converting a paper system architecture into a digital schematic
is burdensome but unavoidable, moving between schematic,
layout, and parts selection was just frustrating.

6 CONCEPT DESIGN
Our core insight from the interviews, then, is for designers
to work at the system architecture level. This higher level
of abstraction captures the essential design intent without
being mired in implementation details.

Beyond Schematic Capture CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

Figure 2: Mockup of the block diagram interface, showing
the system architecture of the datalogger example design.
The details pane on the right shows information on the se-
lected buck converter: modeled operating parameters, se-
lected and alternate implementations, and parts selections
internal to the block. Showing operating parameters demon-
strates how the system ensures design correctness.

We note that this strategy has support in the creativity sup-
port tools literature [31], satisfying the principles of support-
ing exploration by reducing the design effort and designing
for designers by being grounded in actual workflows.

Interfaces
Such a tool must allow users to both design their system
architecture and build the libraries of block implementa-
tions needed to transform high-level designs into a complete
schematic.

Ambiguity in Block Diagrams. As schematics are fundamen-
tally block diagrams, the interactions and interfaces from
today’s schematic capture tools provide a solid and familiar
starting point. In our use case, these block diagrams would
also need to scale between multiple levels of abstraction. At
the lowest level, blocks would still represent individual com-
ponents, but at higher levels, blocks would be sub-circuits.
While many tools already support this with the notion of
hierarchy blocks, additional features are necessary to support
the system architecture level of design.
Primarily, we need support for ambiguity. While current

schematics must be fully defined down to the last part, sys-
tem architecture diagrams in our interviews tended to encode
minimalist design intent, leaving many decisions open. An
example would be labeling a block generically as "accelerom-
eter" instead of with a specific part number.

This ambiguity further provides opportunities for tools to
automate the currently-manual and sometimes-tedious parts
selection process. Recent work in synthesizing schematic
fromhigh-level specifications, including EDG [30] and Trigger-
Action-Circuits [2] demonstrate the technological feasibility
of this approach. As participants generally optimized for
some criteria (commonly, but not always, cost) during their
parts selection process, tools should also optimize for an
user-defined objective function. Alternatively, the system
could generate and display a shortlist of alternatives as in
Trigger-Action-Circuits, though they reported mixed results
with their novice participants.

An underlying constraint-based data model, as described
in EDG, works well here. Types of components, like "ac-
celerometer", would be just one aspect that could be con-
strained. More powerfully, such a system allows users to
directly enter functional specifications, such as the minimum
required bandwidth of said accelerometer. This also grace-
fully handles nonuniform ambiguity, which we observed
from diagrams containing a mix of generic blocks as well as
specific part numbers.

Supporting Libraries. An unambiguous high-level design still
must be combined with implementations of used blocks to
form a layout-ready schematic. However, our interviews
show this to be a major issue: there usually aren’t libraries of
block implementations, and designers generally have to tran-
scribe from datasheet reference circuits. Practical solutions
must also incentivize the creation and sharing of re-usable
libraries, either by making the process easier or by providing
additional value for designers.

In any tool responsible for parts selection, libraries would
need to model parts to a sufficient degree to check correct-
ness of the entire system. As with EDG, electrical charac-
teristics like absolute maximum ratings could be encoded
in a block’s constraints. This would automate some of the
currently-manual checks mentioned by our participants,
such as voltage and current compatibility. Furthermore, these
checks could address one of the primary drawbacks of ERC,
being more accurate than current pin-type based schemes.
One roadblock is that reference circuits often need to be

customized for each application. In these cases, static hierar-
chy blocks would preclude any meaningful re-use. However,
a generator methodology may be the solution: encoding the
rules for generating a block implementation instead of fixed,
static instances. As a simple example, a generator for a LED
circuit would contain the logic to size the resistor given the
LED current and voltages.
Generators built using hardware construction languages

(HCLs) have been used for both chips [18] and PCBs [5].
Despite the limited exploration of their usability, HCL based
generators show significant promise as an abstraction. We

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK R. Lin et al.

Figure 3: Mockup of the hardware construction language in-
terface, showing the implementation of a buck converter
generator. The first block of code, in __init__, defines the
block interface: ports and constraints between parameters
on those ports. The second block of code, in generate, con-
tains the logic for instantiating sub-components once the
block interface has been fully resolved. Here, this consists
of equations transcribed from a buck converter datasheet.

further note that, as is common in the chip industry, these
textual representations can be applied to top-level designs
as well. This may be highly advantageous in some cases: for
example, instantiating large arrays of LEDs becomes trivial.
Allowing recursive ambiguity, where block implemen-

tations can contain further ambiguous blocks, can also be
helpful. Reference schematics may be ambiguous: for exam-
ple, even given a specific accelerometer, its reference circuit
may include capacitors that do not have part numbers. This
also aligns well with some observed design practices, where
common passives are not chosen until ordering.

Interface Mockups
An example of the augmented block diagram interface is
shown in Figure 2. This shows a potential system archi-
tecture for a datalogger that records temperature data to a
microSD card. Designers would be able to specify blocks that
can range from the generic, as with the temperature sensor,
to the specific, such as the microSD card socket. When a
specific part number is needed for a generic block, the user
could either allow the tool to automatically choose, or refine
individual blocks from a list of compatible parts.
An example of the HCL approach is shown in Figure 3.

Our example design for a buck converter generator illus-
trates how current barriers to reuse in schematic tools are
addressed. The parameters in the block interface specify

Figure 4: Mockup of the hardware construction language
compiler interface. This provides information similar to the
detail pane in the block diagram interface, but using a tree
view for navigation in absence of block positioning data.

what the subcircuit needs to do, while the constraints ensure
design consistency by defining limits and how parameters
propagate. The arbitrary code in the generator can then build
customized subcircuits applicable in many different designs,
for example by encoding the component sizing equations
taken from the datasheet.

7 MOCKUP STUDY: METHODOLOGY
As building the proposed design tool is a nontrivial engineer-
ing task, we believe it is important to validate and refine our
design first. In particular, we want to understand whether
users would find this abstraction useful, and more impor-
tantly, their reasoning and any limitations.
To do so, we built clickthrough mockups of design flows

through an example project spanning the two interfaces de-
scribed above. These mockups allowed us to talk concretely
with a visual aid that conveys similarities to conventional
EDA tools, but without requiring the full system that any
meaningful interactivity would require. We choose a data-
logger as our example project because they have real-world
applications, and balance easy participant comprehension
with being complex enough for better tooling to be meaning-
ful. The example system architecture, including the choice
of blocks, are modeled off of observed diagrams.
After some preliminaries, we presented our participants

with an empty canvas in the block diagram interface. From
there walked participants through instantiating the high-
level architecture from parts libraries before asking the tool
to fully solve the design as shown Figure 2. The finalized

Beyond Schematic Capture CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

design is equivalent to a full schematic, which we explain as
being directly exportable to a layout tool like KiCad.

We then move into the HCL mockups, first showing a one-
to-one transcription of the datalogger high-level design in
code as a conceptual bridge. Further examples demonstrate
the power of HCLs, first showing array instantiation of tem-
perature sensors using a for loop, then showing the buck
converter generator in Figure 3. We provide inspection into
the solved design through the compiler interface in Figure 4.
A tree view replaces the block diagram view as the HCL does
not encode block placement and layout information, and the
block properties pane becomes read-only.

We asked open-ended questions about advantages, disad-
vantages, and applicability, particularly compared against
each other or conventional tools. We also asked about accept-
able solver runtimes. For the HCL, we further asked about
the utility of a hypothetical schematic visualization view and
what kind of additional verification users would perform.
The latter gets at notions of trust in the tool and libraries.

We purposefully used a sketch-like art style to key par-
ticipants to focus more on design abstractions instead of UI
specifics [16]. Additionally, by having participants compare-
and-contrast between two interfaces, and asking for the ra-
tionale behind answers, we hope to reduce the effects of
acquiescence bias [36]. This is especially relevant for those
recruited through personal referrals.
Otherwise, the interview and analysis procedure were

the same as the initial interview study. Ten of the original
interview participants, as described in Table 1, returned for
this follow-up study. Interviews averaged 46 minutes with a
standard deviation of 14 minutes.

8 MOCKUP STUDY: FINDINGS
Participants were generally enthusiastic about the system ar-
chitecture level of abstraction for its ability to reduce manual
work, but noted concerns about increased design automation.

Advantages
Automated design verification, essentially a more powerful
ERC, was the most common advantage, mentioned by 5 par-
ticipants. These automated checks reduce the chance of an
uncaught error making it to fabrication while the encapsu-
lation of datasheet parameters allowed replacement of the
tedious manual verification process.

A related advantage, mentioned by three participants, was
the integration of parts data into the main design flow:

It does all of the parameter searching, and comes
up with an appropriate part, which is what I do
anyway just on Digi-Key, which doesn’t have
a very friendly user interface that is not tied
closely into the design. (P11)

Designing at the system architecture level also provided
advantages. Three participants noted the similarity to their
existing processes, that this was part of their existing flow:

I’m already generating some visual representa-
tion that’s generated in software. If that can con-
nect me to my other things, then I would really
value that. (P05)

Not only would automated linkages from system architecture
to schematic to layout save time, but it could eliminate mis-
takes during manual transcription. Errors where something
is forgotten entirely during transcription were especially
insidious, compared to design correctness issues which were
more likely to be caught during inspection.
Finally, some participants brought up additional benefits

with the HCL interface. Two talked about automated con-
sistency throughout the design even as other parts change,
and another noted that the methodology used for manual
calculations was often not kept and must be rediscovered if
needed later.

Limitations
The most common concern, mentioned by six participants,
was a requirement for or dependence on quality libraries.
Missing parts could either be invisible, especially for users
solely relying on the system, or difficult to build.

All participants were inclined to share their libraries, but
some noted limitations like concerns about competitiveness
(especially if sharing uncommon parts), employer policy, and
quality bars. Reasoning for this general attitude ranged from
open-source philosophy to the practical benefits of com-
munity contributions. However, one participant expressed
doubt about whether part manufacturers would contribute
to a system that interoperates with competitors’ parts.

Correctness was also a commonly cited criteria, especially
since the tool introduces generative features:

You’re automating design here. That is, it’s hard
to do and it requires a lot of trust. (P07)

Discussions of trust in the overall tool were generally im-
plicit: all participants mentioned doing some kind of verifica-
tion on the generated output, from connectivity-based spot
checks to comparing against datasheet specs. Sometimes,
these statements would be qualified: one mentioned being
thorough the first time, while two others suggested build-
ing trust by having the system show its work by generating
report including the data sources and rules behind checks.
Trust in the libraries themselves was also a key part of

trusting the tool. Of the five who talked about this, four
mentioned trusting libraries from the part manufacturer or
reputable organizations like Digi-Key and Adafruit. Trust
in community libraries was mixed and based on a variety
of heuristics, such as attention to detail and spot checks

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK R. Lin et al.

against datasheets. Community feedback was another aspect,
including rating systems and indications of successful builds.
Finally, even the higher level of abstraction still requires

nontrivial engineering knowledge:
Beginners don’t understand the difference be-
tween buck and boost and current and max and
minimum footprint space versus component cost.
(P10)

Blocks vs. HCL
While all participants were able to follow and understand
the HCL examples, they also talked about trade-offs with the
block diagram interface.
When asked about use cases, there were (predictably)

mentions of parameterization and repetitive designs for the
HCL. However, there were also mentions of its unsuitability
for designs where its capabilities are not required, such as
connectivity-driven or straightforward designs. One partici-
pant made the observation that:

[The HCL] feels less kind of exploratory. It feels
more like something I’d do if I already have
sketched out something on paper, and then I
need to figure out the components. [...] [The
block diagram interface] feels almost like, to be
a little bit abstract, it feels less serious, right? Be-
cause you’re kind of working with these graphi-
cal representations, whereas this is code. (P04)

Participants were more critical of the HCL, with five men-
tioning the learning curve as a disadvantage. Four also men-
tioned the code representation as more difficult to work with,
instead preferring a visual schematic. One described the HCL
as completely unusable, though could still see value for large
repetitive operations.

Participants had mixed feelings about textural interfaces.
Two believed it would be faster, though one thought that
even writing a for loop would be slower than operations
in the block diagram interface. Another noted benefits of
compatibility with version control tools and text editors.

Finally, one participant recognized that it is not an either-
or situation, correctly noticing the possibility of using a GUI
to define constraints. As both the block diagram interface and
the HCL are built on top of the same data model, both could
support constraints with the appropriate interface elements.

Running Time
Thoughts about acceptable solver running times largely fell
into two broad groups: interactive, generally on the order
of seconds, and batch, which spanned minutes to hours. An
equal number of participants were in each group.
Those who wanted interactive runtimes pointed to the

responsiveness of existing board design tools and modern

websites as justification. They also suggested a modified
version of the mockup flow to achieve these speeds, such as
solving a subset of the design, or incrementally solving for
design changes.

Those participants who were comfortable with batch pro-
cesses cited both the time savings of automation as well as
avoiding manual tedious work. Three mentioned benchmark-
ing against manual processes, such as parts search. Another
talked about the idea of active time and background time:
while manual verification of a schematic requires active at-
tention to the problem, one could attend to other tasks while
waiting for the solver to complete in the background.

Summary
First, our results suggest that designers have two primary
concerns when evaluating new tools: correctness and design
effort. However, both must be evaluated holistically, across
the entire design flow.
While the integration of parts data from datasheets pro-

vides a correctness advantage from a more powerful ERC,
designing at the system architecture level also eliminates an
error-prone manual transcription step from paper. Both also
provide an important speed advantage: the higher level of
abstraction also frees users from worrying about details that
a computer could solve, and block re-use reduces time spent
reinventing the wheel. However, trust in both the system and
libraries was a major concern, but could be earned through
visibility into automated processes and community feedback
mechanisms.

Second, reliable partial automation seems to be preferable
to unreliable full automation. The initial interviews hint at
this, with participants preferring assistive push-and-shove
routing to fully automated routing. We see a similar trend in
the mockup study, where participants were happy with the
incrementally higher level of abstraction instead of pushing
for, say, full synthesis from system requirements.
It may be useful to view the balance of user effort and

system effort as a multi-dimensional trade-off, in terms of
factors such as user time required, tediousness of tasks, ex-
pressiveness of abstractions, and feasibility of automation.
For example, asking the user to further constrain a design
to reduce the search space for runtime reasons may be a
reasonable strategy.

Finally, based on the feedback from the mockup user study,
we believe that our concept design is a good starting point
for the designers of future tools.

9 FUTUREWORK
While we address what we think are the highest-impact
and lowest-hanging fruit in electronics design tools with

Beyond Schematic Capture CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

our concept, both our interviews and principles for creativ-
ity support tools [31] suggest that these considerations are
worth further investigation:

Iteration. Designers tended to iterate, both within the EDA
suite, such as optimizing between schematic and layout, and
through physical prototypes. Our concept only tangentially
addresses iteration through refining constraints of the exam-
ple design.

Open Interchange. We observed two design flows involving
significant use of external tools (Inkscape and chip design
suites), and there are likely to be more highly custom work-
flows. However, supporting these may be more of an imple-
mentation detail, by documenting file formats or exposing
programming interfaces.

Community and Collaboration. Community effects were a
large factor throughout both the initial and mockup inter-
views. Library quality and availability were emphasized in
the mockup responses, but both may ultimately depend on
the existence of a vibrant community. How to encourage the
formation of, and sharing within, such a community may be
as important as the tool design itself.

Enabling Library Creation. Tooling may also encourage cre-
ating libraries by partially automating turning datasheets
into machine-readable data. For example, uConfig [10] is
able to extract pinout data from PDFs for datasheets from
certain vendors. Furthermore, tools might also parse the
highly-regular electrical characteristics tables, and populate
block model parameters.

Beyond the Schematic. While our concept primarily addresses
schematic capture, the interviews also suggest improvements
to other stages like layout. Additionally, there may be value
in persisting ambiguity past schematic capture, such as to
optimize for layout area.

Beyond Electronics
While this study was conducted in the context of PCB design
tools, the findings and recommendations may be applica-
ble to other domains. The ideas of incrementally raising the
level of abstraction, specification and utilization of ambigu-
ity in design, and eliminating tedious transcription work
through better integration can generalize to any design do-
main. Knowing the limitations and requirements of these
approaches, such as the need for trustworthy automation,
will be important to building practical systems.

Our exploration comparing and combining visual inter-
faces and programming languages can also inform other
design domains. One application may be in mechanical CAD,
where parameterized parts could be defined in a powerful

generator language, akin to OpenSCAD, and instantiated in
a visual assembly-level interface.

10 LIMITATIONS
Ultimately, electronics design is a very broad field with many
specialties. While we chose to address PCB design in general
because of its ubiquity, we also realize that tools tailored for
a particular subdomain may be more powerful.

Our goal of looking at entire PCB design flows also trades
depth for breadth. An interview study meant a fairly high-
level investigation and would be subject to participant recall
limitations. However, our findings could form the basis for
more targeted observational studies of particular steps.
Participants also tended to be younger (early 20s to late

30s), likely as a result of a majority of the mailing lists be-
ing university-affiliated. However, given the observation of
similar design flows and repeated themes, we believe that
we have at least found some interesting directions for fu-
ture work. The data here could also form the basis for wider
studies that use more scalable methods such as surveys.

Finally, while the feedback on our tool concept was largely
positive, it is far from proof that it is useful, usable, or even
feasible. Though we try to maintain an internal consistency
in our mockups and construct a representative design flow,
they are only our best effort at imagining what such a tool
would look like without actually building it. However, now
knowing that we are not horribly off the mark, we can build
the system and test its effectiveness with user studies encom-
passing a broad range of applications.

11 CONCLUSION
In order to discover what novel approaches to PCB design
tools are fruitful, we survey a diverse group of PCB designers
over two rounds of interviews.
We start by examining participants’ design flows as they

moved from idea to physical device, and the tools that sup-
ported their work. We found that much of the creative de-
sign process happened during system architecture design
and parts selection, without the support of the existing tool
ecosystem. Defining features of this level of design include
mixed levels of abstraction and design ambiguity.

With these lessons, we envision an augmented block dia-
gram and a hardware construction language interfaces that
better support this level of design. These are inspired by
successes from other domains with feasibility grounded in
prior research.
Feedback from mockups of design flows through those

concept tools indicate that integrating previously separate
data sources, like paper diagrams and datasheets, could en-
able large gains in design time and correctness. Furthermore,
as tools automate more design, trust becomes a central issue.

CHI 2019, May 4–9, 2019, Glasgow, Scotland UK R. Lin et al.

We believe that these findings and concept designs will
lay the foundation for a new generation of tools that enables
designers to work more efficiently and effectively.

12 ACKNOWLEDGMENTS
This workwas supported in part by NSF awards CNS 1505728
and IIS 1149799; Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Num-
ber DE-AR0000849; ADEPT Lab industrial sponsor Intel;
ADEPT Lab affiliates Google, Siemens, and SK Hynix; and
the Camozzi Group via the iCyPhy consortium. The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any
agency thereof.

REFERENCES
[1] Altium. 2018. Altium Designer. https://www.altium.com/

altium-designer/
[2] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017.

Trigger-Action-Circuits: Leveraging Generative Design to Enable
Novices to Design and Build Circuitry. In Proceedings of the 30th An-
nual ACM Symposium on User Interface Software and Technology (UIST
’17). ACM, New York, NY, USA, 331–342. https://doi.org/10.1145/
3126594.3126637

[3] Arduino. 2018. Arduino - Home. https://www.arduino.cc
[4] Autodesk. 2018. EAGLE | PCBDesign Software. https://www.autodesk.

com/products/eagle/overview
[5] Jonathan Bachrach, David Biancolin, Austin Buchan, Duncan W Hal-

dane, and Richard Lin. 2016. JITPCB. In Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2230–2236.
https://doi.org/10.1109/IROS.2016.7759349

[6] Hedayat Markus Bayegan and Einar Aas. 1978. An Integrated System
for Interactive Editing of Schematics, Logic Simulation and PCB Layout
Design. In Proceedings of the 15th Design Automation Conference (DAC
’78). IEEE Press, Piscataway, NJ, USA, 1–8. http://dl.acm.org/citation.
cfm?id=800095.803058

[7] H. Beyer and K. Holtzblatt. 1998. Contextual Design: Defining Customer-
centered Systems. Morgan Kaufmann. https://books.google.com/
books?id=T8pcH4QjATkC

[8] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed
Wires: Investigating the Problems of End-User Developers in a Physical
Computing Task. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA,
3485–3497. https://doi.org/10.1145/2858036.2858533

[9] Cadence. 2018. Allegro PCB Designer. https://www.
cadence.com/content/cadence-www/global/en_US/home/tools/
pcb-design-and-analysis/pcb-layout/allegro-pcb-designer.html

[10] Sébastien Caux. 2018. uConfig. https://github.com/Robotips/uConfig.
[11] Joshua Chan, Tarun Pondicherry, and Paulo Blikstein. 2013. LightUp:

An Augmented, Learning Platform for Electronics. In Proceedings of
the 12th International Conference on Interaction Design and Children
(IDC ’13). ACM, New York, NY, USA, 491–494. https://doi.org/10.1145/
2485760.2485812

[12] Daniel Drew, Julie L. Newcomb, William McGrath, Filip Maksimovic,
David Mellis, and Björn Hartmann. 2016. The Toastboard: Ubiquitous
Instrumentation and Automated Checking of Breadboarded Circuits.
In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology (UIST ’16). ACM, New York, NY, USA, 677–686. https:
//doi.org/10.1145/2984511.2984566

[13] EDASolver. 2016. EDASolver: Welcome to Functional EDA. https:
//edasolver.com

[14] A. C. Finch, K. J. Mackenzie, G. J. Balsdon, and G. Symonds. 1985. A
Method for Gridless Routing of Printed Circuit Boards. In Proceedings
of the 22Nd ACM/IEEE Design Automation Conference (DAC ’85). IEEE
Press, Piscataway, NJ, USA, 509–515. http://dl.acm.org/citation.cfm?
id=317825.317937

[15] Pragun Goyal, Harshit Agrawal, Joseph A. Paradiso, and Pattie Maes.
2013. BoardLab: PCB As an Interface to EDA Software. In Proceedings
of the Adjunct Publication of the 26th Annual ACM Symposium on User
Interface Software and Technology (UIST ’13 Adjunct). ACM, New York,
NY, USA, 19–20. https://doi.org/10.1145/2508468.2514936

[16] Saul Greenberg and Bill Buxton. 2008. Usability Evaluation Considered
Harmful (Some of the Time). In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’08). ACM, New York,
NY, USA, 111–120. https://doi.org/10.1145/1357054.1357074

[17] Kotaro Hara, Christine Chan, and Jon E. Froehlich. 2016. The Design
of Assistive Location-based Technologies for People with Ambulatory
Disabilities: A Formative Study. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 1757–1768. https://doi.org/10.1145/2858036.2858315

[18] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach. 2017. Reusabil-
ity is FIRRTL ground: Hardware construction languages, compiler
frameworks, and transformations. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 209–216. https:
//doi.org/10.1109/ICCAD.2017.8203780

[19] KiCad. 2018. KiCad EDA. http://kicad-pcb.org/
[20] André Knörig, Reto Wettach, and Jonathan Cohen. 2009. Fritzing:

A Tool for Advancing Electronic Prototyping for Designers. In Pro-
ceedings of the 3rd International Conference on Tangible and Embed-
ded Interaction (TEI ’09). ACM, New York, NY, USA, 351–358. https:
//doi.org/10.1145/1517664.1517735

[21] F. B. Lavering. 1964. AUTO CARD Automated Printed Circuit Board
Design. In Proceedings of the SHARE Design Automation Workshop
(DAC ’64). ACM, New York, NY, USA, 9.1–9.29. https://doi.org/10.
1145/800265.810745

[22] Ola A. Marvik. 1979. An Interactive Routing Program with On-line
Clean-up of Sketched Routes. In Proceedings of the 16th Design Automa-
tion Conference (DAC ’79). IEEE Press, Piscataway, NJ, USA, 500–505.
http://dl.acm.org/citation.cfm?id=800292.811760

[23] Andrew J. Matthews. 1977. A Human Engineered PCB Design System.
In Proceedings of the 14th Design Automation Conference (DAC ’77).
IEEE Press, Piscataway, NJ, USA, 182–186. http://dl.acm.org/citation.
cfm?id=800262.809124

[24] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar,
Mitchell Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst:
Visualizing and Checking Behavior of Embedded Systems Across Hard-
ware and Software. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology (UIST ’17). ACM, New York,
NY, USA, 299–310. https://doi.org/10.1145/3126594.3126658

[25] David A. Mellis, Leah Buechley, Mitchel Resnick, and Björn Hartmann.
2016. Engaging Amateurs in the Design, Fabrication, and Assembly
of Electronic Devices. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems (DIS ’16). ACM, New York, NY, USA,
1270–1281. https://doi.org/10.1145/2901790.2901833

[26] Mentor. 2018. Xpedition Enterprise. https://www.mentor.com/pcb/
xpedition/

[27] Martez E. Mott, Jane E., Cynthia L. Bennett, Edward Cutrell, and
Meredith Ringel Morris. 2018. Understanding the Accessibility of
Smartphone Photography for People with Motor Impairments. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing

https://www.altium.com/altium-designer/
https://www.altium.com/altium-designer/
https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/3126594.3126637
https://www.arduino.cc
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://doi.org/10.1109/IROS.2016.7759349
http://dl.acm.org/citation.cfm?id=800095.803058
http://dl.acm.org/citation.cfm?id=800095.803058
https://books.google.com/books?id=T8pcH4QjATkC
https://books.google.com/books?id=T8pcH4QjATkC
https://doi.org/10.1145/2858036.2858533
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/pcb-design-and-analysis/pcb-layout/allegro-pcb-designer.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/pcb-design-and-analysis/pcb-layout/allegro-pcb-designer.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/pcb-design-and-analysis/pcb-layout/allegro-pcb-designer.html
https://github.com/Robotips/uConfig
https://doi.org/10.1145/2485760.2485812
https://doi.org/10.1145/2485760.2485812
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/2984511.2984566
https://edasolver.com
https://edasolver.com
http://dl.acm.org/citation.cfm?id=317825.317937
http://dl.acm.org/citation.cfm?id=317825.317937
https://doi.org/10.1145/2508468.2514936
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1145/2858036.2858315
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
http://kicad-pcb.org/
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1145/800265.810745
https://doi.org/10.1145/800265.810745
http://dl.acm.org/citation.cfm?id=800292.811760
http://dl.acm.org/citation.cfm?id=800262.809124
http://dl.acm.org/citation.cfm?id=800262.809124
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/2901790.2901833
https://www.mentor.com/pcb/xpedition/
https://www.mentor.com/pcb/xpedition/

Beyond Schematic Capture CHI 2019, May 4–9, 2019, Glasgow, Scotland UK

Systems (CHI ’18). ACM, New York, NY, USA, Article 520, 12 pages.
https://doi.org/10.1145/3173574.3174094

[28] Brant Nelson, Brad Riching, and JoshMangelson. 2012. Using a Custom-
Built HDL for Printed Circuit Board Design Capture. PCB West 2012
Presentation.

[29] David Rager and Herb Weiner. 1978. The Design of a Dense PCB
Using an Interactive DA System. SIGDA Newsl. 8, 2 (June 1978), 50–58.
https://doi.org/10.1145/1061458.1061464

[30] Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto Sangiovanni-
Vincentelli, Björn Hartmann, and Prabal Dutta. 2017. Turning Coders
into Makers: The Promise of Embedded Design Generation. In Pro-
ceedings of the 1st Annual ACM Symposium on Computational Fab-
rication (SCF ’17). ACM, New York, NY, USA, Article 4, 10 pages.
https://doi.org/10.1145/3083157.3083159

[31] Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman,
Randy Pausch, Ted Selker, and Mike Eisenberg. 2005. Design principles
for tools to support creative thinking. (2005).

[32] Hiroshi Shiraishi, Mitsuo Ishii, Shoichi Kurita, and Masaaki Nagamine.
1982. ICAD/PCB: Integrated Computer Aided Design System for
Printed Circuit Boards. In Proceedings of the 19th Design Automation
Conference (DAC ’82). IEEE Press, Piscataway, NJ, USA, 727–732. http:
//dl.acm.org/citation.cfm?id=800263.809282

[33] Ben Shneiderman. 2002. Creativity Support Tools. Commun. ACM 45,
10 (Oct. 2002), 116–120. https://doi.org/10.1145/570907.570945

[34] Ben Shneiderman. 2007. Creativity Support Tools: Accelerating Dis-
covery and Innovation. Commun. ACM 50, 12 (Dec. 2007), 20–32.
https://doi.org/10.1145/1323688.1323689

[35] Ben Shneiderman. 2009. Creativity support tools: A grand challenge
for HCI researchers. Engineering the User Interface (2009), 1–9.

[36] Maryam Tohidi, William Buxton, Ronald Baecker, and Abigail Sellen.
2006. Getting the Right Design and the Design Right. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI
’06). ACM, New York, NY, USA, 1243–1252. https://doi.org/10.1145/
1124772.1124960

[37] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey
Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y. Chen. 2016. Cir-
cuitStack: Supporting Rapid Prototyping and Evolution of Electronic
Circuits. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (UIST ’16). ACM, New York, NY, USA, 687–695.
https://doi.org/10.1145/2984511.2984527

[38] R.S. Weiss. 1995. Learning From Strangers: The Art and Method of
Qualitative Interview Studies. Free Press. https://books.google.com/
books?id=i2RzQbiEiD4C

[39] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku,
Ming-Wei Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y. Chen. 2017.
CurrentViz: Sensing and Visualizing Electric Current Flows of Bread-
boarded Circuits. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology (UIST ’17). ACM, New York,
NY, USA, 343–349. https://doi.org/10.1145/3126594.3126646

[40] Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping Shen, Yu-Chian Wu,
Yu-An Chen, Pin-Sung Ku, Ming-Wei Hsu, Yu-Chih Lin, and Mike Y.
Chen. 2017. CircuitSense: Automatic Sensing of Physical Circuits
and Generation of Virtual Circuits to Support Software Tools.. In
Proceedings of the 30th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’17). ACM, New York, NY, USA, 311–319.
https://doi.org/10.1145/3126594.3126634

https://doi.org/10.1145/3173574.3174094
https://doi.org/10.1145/1061458.1061464
https://doi.org/10.1145/3083157.3083159
http://dl.acm.org/citation.cfm?id=800263.809282
http://dl.acm.org/citation.cfm?id=800263.809282
https://doi.org/10.1145/570907.570945
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1124772.1124960
https://doi.org/10.1145/1124772.1124960
https://doi.org/10.1145/2984511.2984527
https://books.google.com/books?id=i2RzQbiEiD4C
https://books.google.com/books?id=i2RzQbiEiD4C
https://doi.org/10.1145/3126594.3126646
https://doi.org/10.1145/3126594.3126634

	Abstract
	1 Introduction
	Research Questions
	Contributions

	2 Related Work
	Foundations
	Recent Work
	Novel Approaches to PCB Design
	Creativity Support Tools

	3 Participants
	4 Interview Study: Methodology
	5 Interview Study: Findings
	Design Flows
	Use of Automation
	Tool Selection
	Summary

	6 Concept Design
	Interfaces
	Interface Mockups

	7 Mockup Study: Methodology
	8 Mockup Study: Findings
	Advantages
	Limitations
	Blocks vs. HCL
	Running Time
	Summary

	9 Future Work
	Beyond Electronics

	10 Limitations
	11 Conclusion
	12 Acknowledgments
	References

